%% UNCOMMENT FOR TUTORIAL % gyacomodir = pwd; gyacomodir = gyacomodir(1:end-2); % get code directory % resdir = '.'; %Name of the directory where the results are located % JOBNUMMIN = 00; JOBNUMMAX = 10; %% addpath(genpath([gyacomodir,'matlab'])) % ... add addpath(genpath([gyacomodir,'matlab/plot'])) % ... add addpath(genpath([gyacomodir,'matlab/compute'])) % ... add addpath(genpath([gyacomodir,'matlab/load'])) % ... add %% Load the results LOCALDIR = [gyacomodir,resdir,'/']; MISCDIR = ['/misc/gyacomo_outputs/',resdir,'/']; %For long term storage system(['mkdir -p ',MISCDIR]); system(['mkdir -p ',LOCALDIR]); CMD = ['rsync ', LOCALDIR,'outputs* ',MISCDIR]; disp(CMD); system(CMD); % Load outputs from jobnummin up to jobnummax data = compile_results(MISCDIR,JOBNUMMIN,JOBNUMMAX); %Compile the results from first output found to JOBNUMMAX if existing data.localdir = LOCALDIR; data.FIGDIR = LOCALDIR; %% PLOTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% default_plots_options disp('Plots') FMT = '.fig'; if 1 %% Space time diagramm (fig 11 Ivanov 2020) % data.scale = 1;%/(data.Nx*data.Ny)^2; i_ = 1; disp([num2str(data.TJOB_SE(i_)),' ',num2str(data.TJOB_SE(i_+1))]) disp([num2str(data.NU_EVOL(i_)),' ',num2str(data.NU_EVOL(i_+1))]) options.TAVG_0 = data.TJOB_SE(i_);%0.4*data.Ts3D(end); options.TAVG_1 = data.TJOB_SE(i_+1);%0.9*data.Ts3D(end); % Averaging times duration options.NCUT = 4; % Number of cuts for averaging and error estimation options.NMVA = 1; % Moving average for time traces % options.ST_FIELD = '\Gamma_x'; % chose your field to plot in spacetime diag (e.g \phi,v_x,G_x) options.ST_FIELD = '\phi'; % chose your field to plot in spacetime diag (e.g \phi,v_x,G_x) options.INTERP = 0; options.RESOLUTION = 256; fig = plot_radial_transport_and_spacetime(data,options); save_figure(data,fig,'.png') end if 0 %% statistical transport averaging for i_ = 1:2:21 % i_ = 3; disp([num2str(data.TJOB_SE(i_)),' ',num2str(data.TJOB_SE(i_+1))]) disp([num2str(data.NU_EVOL(i_)),' ',num2str(data.NU_EVOL(i_+1))]) options.T = [data.TJOB_SE(i_) data.TJOB_SE(i_+1)]; options.NPLOTS = 0; fig = statistical_transport_averaging(data,options); end end if 0 %% MOVIES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Options options.INTERP = 1; options.POLARPLOT = 0; options.NAME = '\phi'; % options.NAME = '\omega_z'; % options.NAME = 'N_e^{00}'; % options.NAME = 'v_y'; % options.NAME = 'n_i^{NZ}'; % options.NAME = '\Gamma_x'; % options.NAME = 'n_i'; options.PLAN = 'xy'; % options.NAME = 'f_i'; % options.PLAN = 'sx'; options.COMP = 'avg'; % options.TIME = data.Ts5D(end-30:end); % options.TIME = data.Ts3D; options.TIME = [000:0.1:7000]; data.EPS = 0.1; data.a = data.EPS * 2000; options.RESOLUTION = 256; create_film(data,options,'.gif') end if 1 %% 2D snapshots % Options options.INTERP = 1; options.POLARPLOT = 0; options.AXISEQUAL = 1; options.NAME = '\phi'; % options.NAME = '\psi'; % options.NAME = 'n_i'; % options.NAME = 'N_i^{00}'; % options.NAME = 'T_i'; % options.NAME = '\Gamma_x'; % options.NAME = 'k^2n_e'; options.PLAN = 'xy'; % options.NAME 'f_i'; % options.PLAN = 'sx'; options.COMP = 'avg'; options.TIME = [1000 1800 2500 3000 4000]; data.a = data.EPS * 2e3; fig = photomaton(data,options); % save_figure(data,fig) end if 0 %% 3D plot on the geometry options.INTERP = 0; options.NAME = '\phi'; options.PLANES = [1]; options.TIME = [30]; options.PLT_MTOPO = 1; options.PLT_FTUBE = 0; data.EPS = 0.4; data.rho_o_R = 3e-3; % Sound larmor radius over Machine size ratio fig = show_geometry(data,options); save_figure(data,fig,'.png') end if 0 %% Kinetic distribution function sqrt(xy) (GENE vsp) options.SPAR = linspace(-3,3,32)+(6/127/2); options.XPERP = linspace( 0,6,32); % options.SPAR = gene_data.vp'; % options.XPERP = gene_data.mu'; options.iz = 'avg'; options.T = [250 600]; options.PLT_FCT = 'pcolor'; options.ONED = 0; options.non_adiab = 0; options.SPECIE = 'i'; options.RMS = 1; % Root mean square i.e. sqrt(sum_k|f_k|^2) as in Gene fig = plot_fa(data,options); % save_figure(data,fig,'.png') end if 0 %% Hermite-Laguerre spectrum % options.TIME = 'avg'; options.P2J = 0; options.ST = 1; options.PLOT_TYPE = 'space-time'; options.NORMALIZED = 0; options.JOBNUM = 0; options.TIME = [1000]; options.specie = 'i'; options.compz = 'avg'; fig = show_moments_spectrum(data,options); % fig = show_napjz(data,options); % save_figure(data,fig,'.png'); end if 0 %% Time averaged spectrum options.TIME = [2000 3000]; options.NORM =1; options.NAME = '\phi'; % options.NAME = 'N_i^{00}'; % options.NAME ='\Gamma_x'; options.PLAN = 'kxky'; options.COMPZ = 'avg'; options.OK = 0; options.COMPXY = 'avg'; % avg/sum/max/zero/ 2D plot otherwise options.COMPT = 'avg'; options.PLOT = 'semilogy'; fig = spectrum_1D(data,options); % save_figure(data,fig,'.png') end if 0 %% 1D real plot options.TIME = [50 100 200]; options.NORM = 0; options.NAME = '\phi'; % options.NAME = 'n_i'; % options.NAME ='\Gamma_x'; % options.NAME ='s_y'; options.COMPX = 'avg'; options.COMPY = 'avg'; options.COMPZ = 1; options.COMPT = 1; options.MOVMT = 1; fig = real_plot_1D(data,options); % save_figure(data,fig,'.png') end if 0 %% Mode evolution options.NORMALIZED = 0; options.K2PLOT = [0.1 0.2 0.3 0.4]; options.TIME = [00:1200]; options.NMA = 1; options.NMODES = 5; options.iz = 'avg'; fig = mode_growth_meter(data,options); save_figure(data,fig,'.png') end if 0 %% ZF caracteristics (space time diagrams) TAVG_0 = 1200; TAVG_1 = 1500; % Averaging times duration % chose your field to plot in spacetime diag (uzf,szf,Gx) fig = ZF_spacetime(data,TAVG_0,TAVG_1); save_figure(data,fig,'.png') end if 0 %% Metric infos fig = plot_metric(data); end if 0 %% linear growth rate for 3D fluxtube trange = [0 100]; nplots = 1; lg = compute_fluxtube_growth_rate(data,trange,nplots); end if 0 %% linear growth rate for 3D Zpinch trange = [5 15]; options.keq0 = 1; % chose to plot planes at k=0 or max options.kxky = 1; options.kzkx = 0; options.kzky = 1; [lg, fig] = compute_3D_zpinch_growth_rate(data,trange,options); save_figure(data,fig,'.png') end