Page MenuHomec4science

bem_Cii_lin.c
No OneTemporary

File Metadata

Created
Wed, Jan 22, 17:45

bem_Cii_lin.c

/*
Input : ind_tr, XYZv, weight, defl, tri_pt4
Output : Cii_lin
weight = (sig1-sig2)/((sig1+sig2)*2*pi) ;
*/
#include <math.h>
#include "mex.h"
#define NR_NEIGH_TRI 10 /* Max # of triangle neighbours */
void Cii_linear(double C[], double ind_tr[], int Ntri, double XYZv[], int Nvert,
double weight, double defl, double tri_pt4[])
{
double pi, dO, dO1, dO2, dO3 ;
double si[3], r1[3], r2[3], r3[3], det, den ;
double d1, d2, d3, sumOm, di2pi ;
double r21[3], r32[3], r13[3], l21, l32, l13 ;
double g1, g2 ,g3, Ome[3], z1[3], z2[3], z3[3] ;
double tmp[3], n[3], nn, beta, ideuxA, epsi ;
double a[3][3], b[3], deter, rc[3], r_b[3], R, Ome_ro ;
/* r0 = si, for the calculuus of the ASA */
double psi1[NR_NEIGH_TRI], psi2[NR_NEIGH_TRI], phi12[NR_NEIGH_TRI] ;
int i, j, u, v, w, nze, lze[NR_NEIGH_TRI] ;
/* 10 neighbouring triangles max for the ASA */
/*printf("Nvert = %d\n",Nvert) ;*/
/*printf("Ntri = %d\n",Ntri) ;*/
/*printf("weight = %f , defl = %f \n",weight,defl) ;*/
epsi = .000000000001 ;
pi = 4.*atan(1.) ;
for (i=0;i<Nvert;++i) {
/* for (i=0;i<1;++i) { */
/* Run through all the points */
/* printf("i = %d\n",i) ; */
si[0] = XYZv[i] ;
si[1] = XYZv[i+Nvert] ;
si[2] = XYZv[i+2*Nvert] ;
/* printf("si = %f %f %f\n",si[0],si[1],si[2]) ; */
nze = 0 ; /* # of neighb for ASA */
sumOm = 0 ; /* total SA for this vert */
for (j=0;j<Ntri;++j) {
/* Run through all the triangles */
/* printf("j = %d\n",j) ; */
u=ind_tr[j] - 1 ;
v=ind_tr[j+Ntri] - 1 ;
w=ind_tr[j+2*Ntri] - 1 ;
/* triangle vert. indices */
/* printf("[u v w] = %d %d %d\n",u,v,w) ; */
if ((i!=u) & (i!=v) & (i!=w)) {
/* if not an ASA */
r1[0]=XYZv[u]-si[0];
r1[1]=XYZv[u+Nvert]-si[1];
r1[2]=XYZv[u+2*Nvert]-si[2];
r2[0]=XYZv[v]-si[0];
r2[1]=XYZv[v+Nvert]-si[1];
r2[2]=XYZv[v+2*Nvert]-si[2];
r3[0]=XYZv[w]-si[0];
r3[1]=XYZv[w+Nvert]-si[1];
r3[2]=XYZv[w+2*Nvert]-si[2];
det=r1[0]*r2[1]*r3[2]+r2[0]*r3[1]*r1[2]
+r3[0]*r1[1]*r2[2]
-(r1[2]*r2[1]*r3[0]+r1[1]*r2[0]*r3[2]
+r1[0]*r2[2]*r3[1]) ;
d1=sqrt(r1[0]*r1[0]+r1[1]*r1[1]+r1[2]*r1[2]) ;
d2=sqrt(r2[0]*r2[0]+r2[1]*r2[1]+r2[2]*r2[2]) ;
d3=sqrt(r3[0]*r3[0]+r3[1]*r3[1]+r3[2]*r3[2]) ;
den=d1*d2*d3+(r1[0]*r2[0]+r1[1]*r2[1]
+r1[2]*r2[2])*d3
+(r1[0]*r3[0]+r1[1]*r3[1]
+r1[2]*r3[2])*d2
+(r2[0]*r3[0]+r2[1]*r3[1]
+r2[2]*r3[2])*d1 ;
dO=2.*atan2(det,den) ;
/* SA sustended by triangle j and vert i */
/* printf("dO = %f\n",dO) ; */
/* Linear distribution of potential on the triangle*/
/***************************************************/
if (fabs(dO)>epsi) {
/* if (dO!=0) { */
/* check that SA ~= 0 */
r21[0]=r2[0]-r1[0];
r21[1]=r2[1]-r1[1];r21[2]=r2[2]-r1[2];
r32[0]=r3[0]-r2[0];
r32[1]=r3[1]-r2[1];r32[2]=r3[2]-r2[2];
r13[0]=r1[0]-r3[0];r13[1]=r1[1]-r3[1];
r13[2]=r1[2]-r3[2];
l21=sqrt(r21[0]*r21[0]+
r21[1]*r21[1]+r21[2]*r21[2]) ;
l32=sqrt(r32[0]*r32[0]+
r32[1]*r32[1]+r32[2]*r32[2]) ;
l13=sqrt(r13[0]*r13[0]+
r13[1]*r13[1]+r13[2]*r13[2]) ;
g1 = log( (l21*d2+r21[0]*r2[0]+
r21[1]*r2[1]+r21[2]*r2[2])/
(l21*d1+r21[0]*r1[0]+
r21[1]*r1[1]+r21[2]*r1[2])
) / l21 ;
g2 = log( (l32*d3+r32[0]*r3[0]+
r32[1]*r3[1]+r32[2]*r3[2])/
(l32*d2+r32[0]*r2[0]+
r32[1]*r2[1]+r32[2]*r2[2])
) / l32 ;
g3 = log( (l13*d1+r13[0]*r1[0]+
r13[1]*r1[1]+r13[2]*r1[2])/
(l13*d3+r13[0]*r3[0]+
r13[1]*r3[1]+r13[2]*r3[2])
) / l13 ;
Ome[0]=(g2-g1)*r2[0]+
(g3-g2)*r3[0]+(g1-g3)*r1[0] ;
Ome[1]=(g2-g1)*r2[1]+
(g3-g2)*r3[1]+(g1-g3)*r1[1] ;
Ome[2]=(g2-g1)*r2[2]+
(g3-g2)*r3[2]+(g1-g3)*r1[2] ;
z1[0]=r2[1]*r3[2]-r3[1]*r2[2];
z1[1]=r2[2]*r3[0]-r3[2]*r2[0];
z1[2]=r2[0]*r3[1]-r3[0]*r2[1];
z2[0]=r3[1]*r1[2]-r1[1]*r3[2];
z2[1]=r3[2]*r1[0]-r1[2]*r3[0];
z2[2]=r3[0]*r1[1]-r1[0]*r3[1];
z3[0]=r1[1]*r2[2]-r2[1]*r1[2];
z3[1]=r1[2]*r2[0]-r2[2]*r1[0];
z3[2]=r1[0]*r2[1]-r2[0]*r1[1];
tmp[0]=r21[1]*r32[2]-r32[1]*r21[2];
tmp[1]=r32[0]*r21[2]-r21[0]*r32[2] ;
tmp[2]=r21[0]*r32[1]-r32[0]*r21[1] ;
nn = sqrt(tmp[0]*tmp[0]+
tmp[1]*tmp[1]+tmp[2]*tmp[2]) ;
n[0]=tmp[0]/nn ;
n[1]=tmp[1]/nn; n[2]=tmp[2]/nn;
beta = r2[0]*n[0]+r2[1]*n[1]+
r2[2]*n[2] ;
ideuxA = beta/(r1[0]*z1[0]+
r1[1]*z1[1]+r1[2]*z1[2]) ;
dO1=ideuxA*( (z1[0]*n[0]+
z1[1]*n[1]+z1[2]*n[2])*dO
-beta*(r32[0]*Ome[0]+
r32[1]*Ome[1]+r32[2]*Ome[2]) ) ;
dO2=ideuxA*( (z2[0]*n[0]+
z2[1]*n[1]+z2[2]*n[2])*dO
-beta*(r13[0]*Ome[0]+
r13[1]*Ome[1]+r13[2]*Ome[2]) ) ;
dO3=ideuxA*( (z3[0]*n[0]+
z3[1]*n[1]+z3[2]*n[2])*dO
-beta*(r21[0]*Ome[0]+
r21[1]*Ome[1]+r21[2]*Ome[2]) ) ;
/* printf("dO123 = %f %f %f\n"
,dO1,dO2,dO3) ;*/
}
else {
dO1=dO/3 ; dO2=dO/3 ; dO3=dO/3 ;
/* dO=0 ; */
}
C[i+u*Nvert] = C[i+u*Nvert] + dO1 * weight ;
C[i+v*Nvert] = C[i+v*Nvert] + dO2 * weight ;
C[i+w*Nvert] = C[i+w*Nvert] + dO3 * weight ;
/* printf("C(i,[u v w]) = %f %f %f\n"
,C[i+u*Nvert],C[i+v*Nvert],C[i+w*Nvert]) ;
/* Distribution of the SA on the 3 vert */
sumOm = sumOm + dO ;
/* printf("sumOm = %f \n",sumOm) ;*/
/* Total SA */
}
else {
/* list and # of triangle for autosolid angle */
lze[nze] = j ;
nze++ ;
}
}
/*******************************/
/* Autosolid angle calculation */
di2pi = (2.*pi-sumOm) ; /* Missing SA */
/*printf("Missing angle = %f\n",di2pi) ;*/
Ome_ro = 0 ;
for (j=0;j<nze;++j) {
/* run through the neighb tri of vert i
take care of the distribution of ASA between triangles */
u=ind_tr[lze[j]] - 1 ;
v=ind_tr[lze[j]+Ntri] - 1 ;
w=ind_tr[lze[j]+2*Ntri] - 1 ;
if (i==w) {
r1[0] = XYZv[u] ;
r1[1] = XYZv[u+Nvert] ;
r1[2] = XYZv[u+2*Nvert] ;
r2[0] = XYZv[v] ;
r2[1] = XYZv[v+Nvert] ;
r2[2] = XYZv[v+2*Nvert] ;
}
if (i==v) {
r1[0] = XYZv[w] ;
r1[1] = XYZv[w+Nvert] ;
r1[2] = XYZv[w+2*Nvert] ;
r2[0] = XYZv[u] ;
r2[1] = XYZv[u+Nvert] ;
r2[2] = XYZv[u+2*Nvert] ;
}
if (i==u) {
r1[0] = XYZv[v] ;
r1[1] = XYZv[v+Nvert] ;
r1[2] = XYZv[v+2*Nvert] ;
r2[0] = XYZv[w] ;
r2[1] = XYZv[w+Nvert] ;
r2[2] = XYZv[w+2*Nvert] ;
}
/* i is one of the 3 indices of the triangle */
/* Take care of the other of the vertices !!! */
r3[0] = tri_pt4[lze[j]] ;
r3[1] = tri_pt4[lze[j]+Ntri] ;
r3[2] = tri_pt4[lze[j]+2*Ntri] ;
/* triangle 4th point for sphere fitting */
/*printf("r1 = %f %f %f ; r2 = %f %f %f ;
r3 = %f %f %f\n",r1[0],r1[1],r1[2], r2[0],r2[1],r2[2],
r3[0],r3[1],r3[2]) ;*/
a[0][0] = si[0]+r1[0] ;
a[0][1] = si[1]+r1[1] ; a[0][2] = si[2]+r1[2] ;
a[1][0] = si[0]+r2[0] ;
a[1][1] = si[1]+r2[1] ; a[1][2] = si[2]+r2[2] ;
a[2][0] = si[0]+r3[0] ;
a[2][1] = si[1]+r3[1] ; a[2][2] = si[2]+r3[2] ;
b[0] = (si[0]*si[0]+si[1]*si[1]+si[2]*si[2]-
(r1[0]*r1[0]+r1[1]*r1[1]+r1[2]*r1[2]))/2 ;
b[1] = (si[0]*si[0]+si[1]*si[1]+si[2]*si[2]-
(r2[0]*r2[0]+r2[1]*r2[1]+r2[2]*r2[2]))/2 ;
b[2] = (si[0]*si[0]+si[1]*si[1]+si[2]*si[2]-
(r3[0]*r3[0]+r3[1]*r3[1]+r3[2]*r3[2]))/2 ;
deter = (a[0][0]*a[1][1]*a[2][2]+
a[0][1]*a[1][2]*a[2][0]+a[0][2]*a[1][0]*a[2][1])
- (a[2][0]*a[1][1]*a[0][2]+
a[1][0]*a[0][1]*a[2][2]+a[0][0]*a[2][1]*a[1][2]) ;
rc[0] = ((b[0]*a[1][1]*a[2][2]+
a[0][1]*a[1][2]*b[2]+a[0][2]*b[1]*a[2][1])
- (b[2]*a[1][1]*a[0][2]+b[1]*a[0][1]*a[2][2]+
b[0]*a[2][1]*a[1][2]))/deter ;
rc[1] = ((a[0][0]*b[1]*a[2][2]+
b[0]*a[1][2]*a[2][0]+a[0][2]*a[1][0]*b[2])
- (a[2][0]*b[1]*a[0][2]+a[1][0]*b[0]*a[2][2]+
a[0][0]*b[2]*a[1][2]))/deter ;
rc[2] = ((a[0][0]*a[1][1]*b[2]+
a[0][1]*b[1]*a[2][0]+b[0]*a[1][0]*a[2][1])
- (a[2][0]*a[1][1]*b[0]+a[1][0]*a[0][1]*b[2]+
a[0][0]*a[2][1]*b[1]))/deter ;
R = sqrt(pow(si[0]-rc[0],2) + pow(si[1]-rc[1],2) +
pow(si[2]-rc[2],2)) ;
/* rc and R = center and radius of the fitted sphere */
/*printf("rc = %f %f %f ; R = %f \n",
rc[0],rc[1],rc[2],R) ;*/
psi1[j] = 2*asin(sqrt(pow(si[0]-r1[0],2) +
pow(si[1]-r1[1],2)+pow(si[2]-r1[2],2))/(2*R)) ;
psi2[j] = 2*asin(sqrt(pow(si[0]-r2[0],2) +
pow(si[1]-r2[1],2)+pow(si[2]-r2[2],2))/(2*R)) ;
/*printf("psi1 = %f , psi2 = %f \n",psi1[j],psi2[j]) ;*/
r_b[0] = rc[0]+(sin(psi1[j]-psi2[j])*(si[0]-rc[0])+
sin(psi2[j])*(r1[0]-rc[0]))/sin(psi1[j]) ;
r_b[1] = rc[1]+(sin(psi1[j]-psi2[j])*(si[1]-rc[1])+
sin(psi2[j])*(r1[1]-rc[1]))/sin(psi1[j]) ;
r_b[2] = rc[2]+(sin(psi1[j]-psi2[j])*(si[2]-rc[2])+
sin(psi2[j])*(r1[2]-rc[2]))/sin(psi1[j]) ;
/*printf("rb = %f %f %f \n",r_b[0],r_b[1],r_b[2]) ;*/
phi12[j] = 2*asin(sqrt(pow(r_b[0]-r2[0],2)+
pow(r_b[1]-r2[1],2)+pow(r_b[2]-r2[2],2))
/(2*R*sin(psi2[j]))) ;
/*printf("phi12 = %f \n",phi12[j]) ;*/
Ome_ro = Ome_ro + (psi1[j]+psi2[j])/4*phi12[j] ;
/* sum of SA of the neighb triangles */
/*printf("Ome_ro = %f \n",Ome_ro) ;*/
}
for (j=0;j<nze;++j) {
/* run through the neighb tri of vert i
take care of the distribution of ASA between the vert of tri */
u=ind_tr[lze[j]] - 1 ;
v=ind_tr[lze[j]+Ntri] - 1 ;
w=ind_tr[lze[j]+2*Ntri] - 1 ;
C[i+i*Nvert] = C[i+i*Nvert] + phi12[j]/48*
(7*psi1[j]+7*psi2[j]-pow(psi1[j],2)
/psi2[j]-pow(psi2[j],2)/psi1[j])
*di2pi/Ome_ro * weight ;
if (i==w) {
C[i+u*Nvert] = C[i+u*Nvert] + phi12[j]/48*
(3*psi1[j]+2*psi2[j]+pow(psi2[j],2)
/psi1[j]) * di2pi/Ome_ro * weight ;
C[i+v*Nvert] = C[i+v*Nvert] + phi12[j]/48*
(3*psi2[j]+2*psi1[j]+pow(psi1[j],2)
/psi2[j]) * di2pi/Ome_ro * weight ;
}
if (i==v) {
C[i+w*Nvert] = C[i+w*Nvert] + phi12[j]/48*
(3*psi1[j]+2*psi2[j]+pow(psi2[j],2)
/psi1[j]) * di2pi/Ome_ro * weight ;
C[i+u*Nvert] = C[i+u*Nvert] + phi12[j]/48*
(3*psi2[j]+2*psi1[j]+pow(psi1[j],2)
/psi2[j]) * di2pi/Ome_ro * weight ;
}
if (i==u) {
C[i+v*Nvert] = C[i+v*Nvert] + phi12[j]/48*
(3*psi1[j]+2*psi2[j]+pow(psi2[j],2)
/psi1[j]) * di2pi/Ome_ro * weight ;
C[i+w*Nvert] = C[i+w*Nvert] + phi12[j]/48*
(3*psi2[j]+2*psi1[j]+pow(psi1[j],2)
/psi2[j]) * di2pi/Ome_ro * weight ;
}
}
/* remove the identity matrix */
C[i+i*Nvert] = C[i+i*Nvert] - 1 ;
}
/* Deflation */
for (i=0;i<(Nvert*Nvert);++i) {
C[i] = C[i] - defl ;
}
}
/***************************************************************************/
void mexFunction(
int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
double *Cii_l ;
double *ind_tr, *XYZv, weight, defl, *tri_pt4 ;
unsigned int mind, nind, mXYZv, nXYZv, mtri_pt4, ntri_pt4 ;
if (nrhs!=5) {
mexErrMsgTxt("5 inputs required: ind_tr, XYZv, weight, defl, tri_pt4") ;
} else if (nlhs>1) {
mexErrMsgTxt("Only ONE output : Cii_lin") ;
}
mind=mxGetM(prhs[0]) ;
nind=mxGetN(prhs[0]) ;
if (!mxIsNumeric(prhs[0]) || mxIsComplex(prhs[0])
|| mxIsSparse(prhs[0]) || (nind!=3)) {
mexErrMsgTxt("ind_tr must be a matrix : Ntri x 3") ;
}
mXYZv=mxGetM(prhs[1]) ;
nXYZv=mxGetN(prhs[1]) ;
if (!mxIsNumeric(prhs[1]) || mxIsComplex(prhs[1])
|| mxIsSparse(prhs[1]) || (nXYZv!=3) ) {
mexErrMsgTxt("XYZv must be a matrix : Nvert x 3") ;
}
if (!mxIsNumeric(prhs[2]) || mxIsComplex(prhs[2])
|| mxIsSparse(prhs[2]) || !mxIsDouble(prhs[2])
|| mxGetN(prhs[2])*mxGetM(prhs[2])!=1 ) {
mexErrMsgTxt("weight must be a scalar") ;
}
if (!mxIsNumeric(prhs[3]) || mxIsComplex(prhs[3])
|| mxIsSparse(prhs[3]) || !mxIsDouble(prhs[3])
|| mxGetN(prhs[3])*mxGetM(prhs[3])!=1 ) {
mexErrMsgTxt("defl must be a scalar") ;
}
mtri_pt4=mxGetM(prhs[4]) ;
ntri_pt4=mxGetN(prhs[4]) ;
if (!mxIsNumeric(prhs[4]) || mxIsComplex(prhs[4])
|| mxIsSparse(prhs[4]) || (ntri_pt4!=3) || (mtri_pt4!=mind)) {
mexErrMsgTxt("tri_pt4 must be a matrix : Ntri x 3") ;
}
plhs[0]=mxCreateDoubleMatrix(mXYZv,mXYZv,mxREAL) ;
Cii_l = mxGetPr(plhs[0]) ;
ind_tr = mxGetPr(prhs[0]) ;
XYZv = mxGetPr(prhs[1]) ;
weight = mxGetScalar(prhs[2]) ;
defl = mxGetScalar(prhs[3]) ;
tri_pt4 = mxGetPr(prhs[4]) ;
Cii_linear(Cii_l, ind_tr, mind, XYZv, mXYZv, weight, defl, tri_pt4) ;
mxSetPr(plhs[0],Cii_l) ;
}

Event Timeline