Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F99243973
bem_Cii_lin.c
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Jan 22, 17:45
Size
12 KB
Mime Type
text/x-c
Expires
Fri, Jan 24, 17:45 (2 d)
Engine
blob
Format
Raw Data
Handle
23754854
Attached To
R10025 iCAPs public version 2
bem_Cii_lin.c
View Options
/*
Input : ind_tr, XYZv, weight, defl, tri_pt4
Output : Cii_lin
weight = (sig1-sig2)/((sig1+sig2)*2*pi) ;
*/
#include <math.h>
#include "mex.h"
#define NR_NEIGH_TRI 10
/* Max # of triangle neighbours */
void
Cii_linear
(
double
C
[],
double
ind_tr
[],
int
Ntri
,
double
XYZv
[],
int
Nvert
,
double
weight
,
double
defl
,
double
tri_pt4
[])
{
double
pi
,
dO
,
dO1
,
dO2
,
dO3
;
double
si
[
3
],
r1
[
3
],
r2
[
3
],
r3
[
3
],
det
,
den
;
double
d1
,
d2
,
d3
,
sumOm
,
di2pi
;
double
r21
[
3
],
r32
[
3
],
r13
[
3
],
l21
,
l32
,
l13
;
double
g1
,
g2
,
g3
,
Ome
[
3
],
z1
[
3
],
z2
[
3
],
z3
[
3
]
;
double
tmp
[
3
],
n
[
3
],
nn
,
beta
,
ideuxA
,
epsi
;
double
a
[
3
][
3
],
b
[
3
],
deter
,
rc
[
3
],
r_b
[
3
],
R
,
Ome_ro
;
/* r0 = si, for the calculuus of the ASA */
double
psi1
[
NR_NEIGH_TRI
],
psi2
[
NR_NEIGH_TRI
],
phi12
[
NR_NEIGH_TRI
]
;
int
i
,
j
,
u
,
v
,
w
,
nze
,
lze
[
NR_NEIGH_TRI
]
;
/* 10 neighbouring triangles max for the ASA */
/*printf("Nvert = %d\n",Nvert) ;*/
/*printf("Ntri = %d\n",Ntri) ;*/
/*printf("weight = %f , defl = %f \n",weight,defl) ;*/
epsi
=
.000000000001
;
pi
=
4.
*
atan
(
1.
)
;
for
(
i
=
0
;
i
<
Nvert
;
++
i
)
{
/* for (i=0;i<1;++i) { */
/* Run through all the points */
/* printf("i = %d\n",i) ; */
si
[
0
]
=
XYZv
[
i
]
;
si
[
1
]
=
XYZv
[
i
+
Nvert
]
;
si
[
2
]
=
XYZv
[
i
+
2
*
Nvert
]
;
/* printf("si = %f %f %f\n",si[0],si[1],si[2]) ; */
nze
=
0
;
/* # of neighb for ASA */
sumOm
=
0
;
/* total SA for this vert */
for
(
j
=
0
;
j
<
Ntri
;
++
j
)
{
/* Run through all the triangles */
/* printf("j = %d\n",j) ; */
u
=
ind_tr
[
j
]
-
1
;
v
=
ind_tr
[
j
+
Ntri
]
-
1
;
w
=
ind_tr
[
j
+
2
*
Ntri
]
-
1
;
/* triangle vert. indices */
/* printf("[u v w] = %d %d %d\n",u,v,w) ; */
if
((
i
!=
u
)
&
(
i
!=
v
)
&
(
i
!=
w
))
{
/* if not an ASA */
r1
[
0
]
=
XYZv
[
u
]
-
si
[
0
];
r1
[
1
]
=
XYZv
[
u
+
Nvert
]
-
si
[
1
];
r1
[
2
]
=
XYZv
[
u
+
2
*
Nvert
]
-
si
[
2
];
r2
[
0
]
=
XYZv
[
v
]
-
si
[
0
];
r2
[
1
]
=
XYZv
[
v
+
Nvert
]
-
si
[
1
];
r2
[
2
]
=
XYZv
[
v
+
2
*
Nvert
]
-
si
[
2
];
r3
[
0
]
=
XYZv
[
w
]
-
si
[
0
];
r3
[
1
]
=
XYZv
[
w
+
Nvert
]
-
si
[
1
];
r3
[
2
]
=
XYZv
[
w
+
2
*
Nvert
]
-
si
[
2
];
det
=
r1
[
0
]
*
r2
[
1
]
*
r3
[
2
]
+
r2
[
0
]
*
r3
[
1
]
*
r1
[
2
]
+
r3
[
0
]
*
r1
[
1
]
*
r2
[
2
]
-
(
r1
[
2
]
*
r2
[
1
]
*
r3
[
0
]
+
r1
[
1
]
*
r2
[
0
]
*
r3
[
2
]
+
r1
[
0
]
*
r2
[
2
]
*
r3
[
1
])
;
d1
=
sqrt
(
r1
[
0
]
*
r1
[
0
]
+
r1
[
1
]
*
r1
[
1
]
+
r1
[
2
]
*
r1
[
2
])
;
d2
=
sqrt
(
r2
[
0
]
*
r2
[
0
]
+
r2
[
1
]
*
r2
[
1
]
+
r2
[
2
]
*
r2
[
2
])
;
d3
=
sqrt
(
r3
[
0
]
*
r3
[
0
]
+
r3
[
1
]
*
r3
[
1
]
+
r3
[
2
]
*
r3
[
2
])
;
den
=
d1
*
d2
*
d3
+
(
r1
[
0
]
*
r2
[
0
]
+
r1
[
1
]
*
r2
[
1
]
+
r1
[
2
]
*
r2
[
2
])
*
d3
+
(
r1
[
0
]
*
r3
[
0
]
+
r1
[
1
]
*
r3
[
1
]
+
r1
[
2
]
*
r3
[
2
])
*
d2
+
(
r2
[
0
]
*
r3
[
0
]
+
r2
[
1
]
*
r3
[
1
]
+
r2
[
2
]
*
r3
[
2
])
*
d1
;
dO
=
2.
*
atan2
(
det
,
den
)
;
/* SA sustended by triangle j and vert i */
/* printf("dO = %f\n",dO) ; */
/* Linear distribution of potential on the triangle*/
/***************************************************/
if
(
fabs
(
dO
)
>
epsi
)
{
/* if (dO!=0) { */
/* check that SA ~= 0 */
r21
[
0
]
=
r2
[
0
]
-
r1
[
0
];
r21
[
1
]
=
r2
[
1
]
-
r1
[
1
];
r21
[
2
]
=
r2
[
2
]
-
r1
[
2
];
r32
[
0
]
=
r3
[
0
]
-
r2
[
0
];
r32
[
1
]
=
r3
[
1
]
-
r2
[
1
];
r32
[
2
]
=
r3
[
2
]
-
r2
[
2
];
r13
[
0
]
=
r1
[
0
]
-
r3
[
0
];
r13
[
1
]
=
r1
[
1
]
-
r3
[
1
];
r13
[
2
]
=
r1
[
2
]
-
r3
[
2
];
l21
=
sqrt
(
r21
[
0
]
*
r21
[
0
]
+
r21
[
1
]
*
r21
[
1
]
+
r21
[
2
]
*
r21
[
2
])
;
l32
=
sqrt
(
r32
[
0
]
*
r32
[
0
]
+
r32
[
1
]
*
r32
[
1
]
+
r32
[
2
]
*
r32
[
2
])
;
l13
=
sqrt
(
r13
[
0
]
*
r13
[
0
]
+
r13
[
1
]
*
r13
[
1
]
+
r13
[
2
]
*
r13
[
2
])
;
g1
=
log
(
(
l21
*
d2
+
r21
[
0
]
*
r2
[
0
]
+
r21
[
1
]
*
r2
[
1
]
+
r21
[
2
]
*
r2
[
2
])
/
(
l21
*
d1
+
r21
[
0
]
*
r1
[
0
]
+
r21
[
1
]
*
r1
[
1
]
+
r21
[
2
]
*
r1
[
2
])
)
/
l21
;
g2
=
log
(
(
l32
*
d3
+
r32
[
0
]
*
r3
[
0
]
+
r32
[
1
]
*
r3
[
1
]
+
r32
[
2
]
*
r3
[
2
])
/
(
l32
*
d2
+
r32
[
0
]
*
r2
[
0
]
+
r32
[
1
]
*
r2
[
1
]
+
r32
[
2
]
*
r2
[
2
])
)
/
l32
;
g3
=
log
(
(
l13
*
d1
+
r13
[
0
]
*
r1
[
0
]
+
r13
[
1
]
*
r1
[
1
]
+
r13
[
2
]
*
r1
[
2
])
/
(
l13
*
d3
+
r13
[
0
]
*
r3
[
0
]
+
r13
[
1
]
*
r3
[
1
]
+
r13
[
2
]
*
r3
[
2
])
)
/
l13
;
Ome
[
0
]
=
(
g2
-
g1
)
*
r2
[
0
]
+
(
g3
-
g2
)
*
r3
[
0
]
+
(
g1
-
g3
)
*
r1
[
0
]
;
Ome
[
1
]
=
(
g2
-
g1
)
*
r2
[
1
]
+
(
g3
-
g2
)
*
r3
[
1
]
+
(
g1
-
g3
)
*
r1
[
1
]
;
Ome
[
2
]
=
(
g2
-
g1
)
*
r2
[
2
]
+
(
g3
-
g2
)
*
r3
[
2
]
+
(
g1
-
g3
)
*
r1
[
2
]
;
z1
[
0
]
=
r2
[
1
]
*
r3
[
2
]
-
r3
[
1
]
*
r2
[
2
];
z1
[
1
]
=
r2
[
2
]
*
r3
[
0
]
-
r3
[
2
]
*
r2
[
0
];
z1
[
2
]
=
r2
[
0
]
*
r3
[
1
]
-
r3
[
0
]
*
r2
[
1
];
z2
[
0
]
=
r3
[
1
]
*
r1
[
2
]
-
r1
[
1
]
*
r3
[
2
];
z2
[
1
]
=
r3
[
2
]
*
r1
[
0
]
-
r1
[
2
]
*
r3
[
0
];
z2
[
2
]
=
r3
[
0
]
*
r1
[
1
]
-
r1
[
0
]
*
r3
[
1
];
z3
[
0
]
=
r1
[
1
]
*
r2
[
2
]
-
r2
[
1
]
*
r1
[
2
];
z3
[
1
]
=
r1
[
2
]
*
r2
[
0
]
-
r2
[
2
]
*
r1
[
0
];
z3
[
2
]
=
r1
[
0
]
*
r2
[
1
]
-
r2
[
0
]
*
r1
[
1
];
tmp
[
0
]
=
r21
[
1
]
*
r32
[
2
]
-
r32
[
1
]
*
r21
[
2
];
tmp
[
1
]
=
r32
[
0
]
*
r21
[
2
]
-
r21
[
0
]
*
r32
[
2
]
;
tmp
[
2
]
=
r21
[
0
]
*
r32
[
1
]
-
r32
[
0
]
*
r21
[
1
]
;
nn
=
sqrt
(
tmp
[
0
]
*
tmp
[
0
]
+
tmp
[
1
]
*
tmp
[
1
]
+
tmp
[
2
]
*
tmp
[
2
])
;
n
[
0
]
=
tmp
[
0
]
/
nn
;
n
[
1
]
=
tmp
[
1
]
/
nn
;
n
[
2
]
=
tmp
[
2
]
/
nn
;
beta
=
r2
[
0
]
*
n
[
0
]
+
r2
[
1
]
*
n
[
1
]
+
r2
[
2
]
*
n
[
2
]
;
ideuxA
=
beta
/
(
r1
[
0
]
*
z1
[
0
]
+
r1
[
1
]
*
z1
[
1
]
+
r1
[
2
]
*
z1
[
2
])
;
dO1
=
ideuxA
*
(
(
z1
[
0
]
*
n
[
0
]
+
z1
[
1
]
*
n
[
1
]
+
z1
[
2
]
*
n
[
2
])
*
dO
-
beta
*
(
r32
[
0
]
*
Ome
[
0
]
+
r32
[
1
]
*
Ome
[
1
]
+
r32
[
2
]
*
Ome
[
2
])
)
;
dO2
=
ideuxA
*
(
(
z2
[
0
]
*
n
[
0
]
+
z2
[
1
]
*
n
[
1
]
+
z2
[
2
]
*
n
[
2
])
*
dO
-
beta
*
(
r13
[
0
]
*
Ome
[
0
]
+
r13
[
1
]
*
Ome
[
1
]
+
r13
[
2
]
*
Ome
[
2
])
)
;
dO3
=
ideuxA
*
(
(
z3
[
0
]
*
n
[
0
]
+
z3
[
1
]
*
n
[
1
]
+
z3
[
2
]
*
n
[
2
])
*
dO
-
beta
*
(
r21
[
0
]
*
Ome
[
0
]
+
r21
[
1
]
*
Ome
[
1
]
+
r21
[
2
]
*
Ome
[
2
])
)
;
/* printf("dO123 = %f %f %f\n"
,dO1,dO2,dO3) ;*/
}
else
{
dO1
=
dO
/
3
;
dO2
=
dO
/
3
;
dO3
=
dO
/
3
;
/* dO=0 ; */
}
C
[
i
+
u
*
Nvert
]
=
C
[
i
+
u
*
Nvert
]
+
dO1
*
weight
;
C
[
i
+
v
*
Nvert
]
=
C
[
i
+
v
*
Nvert
]
+
dO2
*
weight
;
C
[
i
+
w
*
Nvert
]
=
C
[
i
+
w
*
Nvert
]
+
dO3
*
weight
;
/* printf("C(i,[u v w]) = %f %f %f\n"
,C[i+u*Nvert],C[i+v*Nvert],C[i+w*Nvert]) ;
/* Distribution of the SA on the 3 vert */
sumOm
=
sumOm
+
dO
;
/* printf("sumOm = %f \n",sumOm) ;*/
/* Total SA */
}
else
{
/* list and # of triangle for autosolid angle */
lze
[
nze
]
=
j
;
nze
++
;
}
}
/*******************************/
/* Autosolid angle calculation */
di2pi
=
(
2.
*
pi
-
sumOm
)
;
/* Missing SA */
/*printf("Missing angle = %f\n",di2pi) ;*/
Ome_ro
=
0
;
for
(
j
=
0
;
j
<
nze
;
++
j
)
{
/* run through the neighb tri of vert i
take care of the distribution of ASA between triangles */
u
=
ind_tr
[
lze
[
j
]]
-
1
;
v
=
ind_tr
[
lze
[
j
]
+
Ntri
]
-
1
;
w
=
ind_tr
[
lze
[
j
]
+
2
*
Ntri
]
-
1
;
if
(
i
==
w
)
{
r1
[
0
]
=
XYZv
[
u
]
;
r1
[
1
]
=
XYZv
[
u
+
Nvert
]
;
r1
[
2
]
=
XYZv
[
u
+
2
*
Nvert
]
;
r2
[
0
]
=
XYZv
[
v
]
;
r2
[
1
]
=
XYZv
[
v
+
Nvert
]
;
r2
[
2
]
=
XYZv
[
v
+
2
*
Nvert
]
;
}
if
(
i
==
v
)
{
r1
[
0
]
=
XYZv
[
w
]
;
r1
[
1
]
=
XYZv
[
w
+
Nvert
]
;
r1
[
2
]
=
XYZv
[
w
+
2
*
Nvert
]
;
r2
[
0
]
=
XYZv
[
u
]
;
r2
[
1
]
=
XYZv
[
u
+
Nvert
]
;
r2
[
2
]
=
XYZv
[
u
+
2
*
Nvert
]
;
}
if
(
i
==
u
)
{
r1
[
0
]
=
XYZv
[
v
]
;
r1
[
1
]
=
XYZv
[
v
+
Nvert
]
;
r1
[
2
]
=
XYZv
[
v
+
2
*
Nvert
]
;
r2
[
0
]
=
XYZv
[
w
]
;
r2
[
1
]
=
XYZv
[
w
+
Nvert
]
;
r2
[
2
]
=
XYZv
[
w
+
2
*
Nvert
]
;
}
/* i is one of the 3 indices of the triangle */
/* Take care of the other of the vertices !!! */
r3
[
0
]
=
tri_pt4
[
lze
[
j
]]
;
r3
[
1
]
=
tri_pt4
[
lze
[
j
]
+
Ntri
]
;
r3
[
2
]
=
tri_pt4
[
lze
[
j
]
+
2
*
Ntri
]
;
/* triangle 4th point for sphere fitting */
/*printf("r1 = %f %f %f ; r2 = %f %f %f ;
r3 = %f %f %f\n",r1[0],r1[1],r1[2], r2[0],r2[1],r2[2],
r3[0],r3[1],r3[2]) ;*/
a
[
0
][
0
]
=
si
[
0
]
+
r1
[
0
]
;
a
[
0
][
1
]
=
si
[
1
]
+
r1
[
1
]
;
a
[
0
][
2
]
=
si
[
2
]
+
r1
[
2
]
;
a
[
1
][
0
]
=
si
[
0
]
+
r2
[
0
]
;
a
[
1
][
1
]
=
si
[
1
]
+
r2
[
1
]
;
a
[
1
][
2
]
=
si
[
2
]
+
r2
[
2
]
;
a
[
2
][
0
]
=
si
[
0
]
+
r3
[
0
]
;
a
[
2
][
1
]
=
si
[
1
]
+
r3
[
1
]
;
a
[
2
][
2
]
=
si
[
2
]
+
r3
[
2
]
;
b
[
0
]
=
(
si
[
0
]
*
si
[
0
]
+
si
[
1
]
*
si
[
1
]
+
si
[
2
]
*
si
[
2
]
-
(
r1
[
0
]
*
r1
[
0
]
+
r1
[
1
]
*
r1
[
1
]
+
r1
[
2
]
*
r1
[
2
]))
/
2
;
b
[
1
]
=
(
si
[
0
]
*
si
[
0
]
+
si
[
1
]
*
si
[
1
]
+
si
[
2
]
*
si
[
2
]
-
(
r2
[
0
]
*
r2
[
0
]
+
r2
[
1
]
*
r2
[
1
]
+
r2
[
2
]
*
r2
[
2
]))
/
2
;
b
[
2
]
=
(
si
[
0
]
*
si
[
0
]
+
si
[
1
]
*
si
[
1
]
+
si
[
2
]
*
si
[
2
]
-
(
r3
[
0
]
*
r3
[
0
]
+
r3
[
1
]
*
r3
[
1
]
+
r3
[
2
]
*
r3
[
2
]))
/
2
;
deter
=
(
a
[
0
][
0
]
*
a
[
1
][
1
]
*
a
[
2
][
2
]
+
a
[
0
][
1
]
*
a
[
1
][
2
]
*
a
[
2
][
0
]
+
a
[
0
][
2
]
*
a
[
1
][
0
]
*
a
[
2
][
1
])
-
(
a
[
2
][
0
]
*
a
[
1
][
1
]
*
a
[
0
][
2
]
+
a
[
1
][
0
]
*
a
[
0
][
1
]
*
a
[
2
][
2
]
+
a
[
0
][
0
]
*
a
[
2
][
1
]
*
a
[
1
][
2
])
;
rc
[
0
]
=
((
b
[
0
]
*
a
[
1
][
1
]
*
a
[
2
][
2
]
+
a
[
0
][
1
]
*
a
[
1
][
2
]
*
b
[
2
]
+
a
[
0
][
2
]
*
b
[
1
]
*
a
[
2
][
1
])
-
(
b
[
2
]
*
a
[
1
][
1
]
*
a
[
0
][
2
]
+
b
[
1
]
*
a
[
0
][
1
]
*
a
[
2
][
2
]
+
b
[
0
]
*
a
[
2
][
1
]
*
a
[
1
][
2
]))
/
deter
;
rc
[
1
]
=
((
a
[
0
][
0
]
*
b
[
1
]
*
a
[
2
][
2
]
+
b
[
0
]
*
a
[
1
][
2
]
*
a
[
2
][
0
]
+
a
[
0
][
2
]
*
a
[
1
][
0
]
*
b
[
2
])
-
(
a
[
2
][
0
]
*
b
[
1
]
*
a
[
0
][
2
]
+
a
[
1
][
0
]
*
b
[
0
]
*
a
[
2
][
2
]
+
a
[
0
][
0
]
*
b
[
2
]
*
a
[
1
][
2
]))
/
deter
;
rc
[
2
]
=
((
a
[
0
][
0
]
*
a
[
1
][
1
]
*
b
[
2
]
+
a
[
0
][
1
]
*
b
[
1
]
*
a
[
2
][
0
]
+
b
[
0
]
*
a
[
1
][
0
]
*
a
[
2
][
1
])
-
(
a
[
2
][
0
]
*
a
[
1
][
1
]
*
b
[
0
]
+
a
[
1
][
0
]
*
a
[
0
][
1
]
*
b
[
2
]
+
a
[
0
][
0
]
*
a
[
2
][
1
]
*
b
[
1
]))
/
deter
;
R
=
sqrt
(
pow
(
si
[
0
]
-
rc
[
0
],
2
)
+
pow
(
si
[
1
]
-
rc
[
1
],
2
)
+
pow
(
si
[
2
]
-
rc
[
2
],
2
))
;
/* rc and R = center and radius of the fitted sphere */
/*printf("rc = %f %f %f ; R = %f \n",
rc[0],rc[1],rc[2],R) ;*/
psi1
[
j
]
=
2
*
asin
(
sqrt
(
pow
(
si
[
0
]
-
r1
[
0
],
2
)
+
pow
(
si
[
1
]
-
r1
[
1
],
2
)
+
pow
(
si
[
2
]
-
r1
[
2
],
2
))
/
(
2
*
R
))
;
psi2
[
j
]
=
2
*
asin
(
sqrt
(
pow
(
si
[
0
]
-
r2
[
0
],
2
)
+
pow
(
si
[
1
]
-
r2
[
1
],
2
)
+
pow
(
si
[
2
]
-
r2
[
2
],
2
))
/
(
2
*
R
))
;
/*printf("psi1 = %f , psi2 = %f \n",psi1[j],psi2[j]) ;*/
r_b
[
0
]
=
rc
[
0
]
+
(
sin
(
psi1
[
j
]
-
psi2
[
j
])
*
(
si
[
0
]
-
rc
[
0
])
+
sin
(
psi2
[
j
])
*
(
r1
[
0
]
-
rc
[
0
]))
/
sin
(
psi1
[
j
])
;
r_b
[
1
]
=
rc
[
1
]
+
(
sin
(
psi1
[
j
]
-
psi2
[
j
])
*
(
si
[
1
]
-
rc
[
1
])
+
sin
(
psi2
[
j
])
*
(
r1
[
1
]
-
rc
[
1
]))
/
sin
(
psi1
[
j
])
;
r_b
[
2
]
=
rc
[
2
]
+
(
sin
(
psi1
[
j
]
-
psi2
[
j
])
*
(
si
[
2
]
-
rc
[
2
])
+
sin
(
psi2
[
j
])
*
(
r1
[
2
]
-
rc
[
2
]))
/
sin
(
psi1
[
j
])
;
/*printf("rb = %f %f %f \n",r_b[0],r_b[1],r_b[2]) ;*/
phi12
[
j
]
=
2
*
asin
(
sqrt
(
pow
(
r_b
[
0
]
-
r2
[
0
],
2
)
+
pow
(
r_b
[
1
]
-
r2
[
1
],
2
)
+
pow
(
r_b
[
2
]
-
r2
[
2
],
2
))
/
(
2
*
R
*
sin
(
psi2
[
j
])))
;
/*printf("phi12 = %f \n",phi12[j]) ;*/
Ome_ro
=
Ome_ro
+
(
psi1
[
j
]
+
psi2
[
j
])
/
4
*
phi12
[
j
]
;
/* sum of SA of the neighb triangles */
/*printf("Ome_ro = %f \n",Ome_ro) ;*/
}
for
(
j
=
0
;
j
<
nze
;
++
j
)
{
/* run through the neighb tri of vert i
take care of the distribution of ASA between the vert of tri */
u
=
ind_tr
[
lze
[
j
]]
-
1
;
v
=
ind_tr
[
lze
[
j
]
+
Ntri
]
-
1
;
w
=
ind_tr
[
lze
[
j
]
+
2
*
Ntri
]
-
1
;
C
[
i
+
i
*
Nvert
]
=
C
[
i
+
i
*
Nvert
]
+
phi12
[
j
]
/
48
*
(
7
*
psi1
[
j
]
+
7
*
psi2
[
j
]
-
pow
(
psi1
[
j
],
2
)
/
psi2
[
j
]
-
pow
(
psi2
[
j
],
2
)
/
psi1
[
j
])
*
di2pi
/
Ome_ro
*
weight
;
if
(
i
==
w
)
{
C
[
i
+
u
*
Nvert
]
=
C
[
i
+
u
*
Nvert
]
+
phi12
[
j
]
/
48
*
(
3
*
psi1
[
j
]
+
2
*
psi2
[
j
]
+
pow
(
psi2
[
j
],
2
)
/
psi1
[
j
])
*
di2pi
/
Ome_ro
*
weight
;
C
[
i
+
v
*
Nvert
]
=
C
[
i
+
v
*
Nvert
]
+
phi12
[
j
]
/
48
*
(
3
*
psi2
[
j
]
+
2
*
psi1
[
j
]
+
pow
(
psi1
[
j
],
2
)
/
psi2
[
j
])
*
di2pi
/
Ome_ro
*
weight
;
}
if
(
i
==
v
)
{
C
[
i
+
w
*
Nvert
]
=
C
[
i
+
w
*
Nvert
]
+
phi12
[
j
]
/
48
*
(
3
*
psi1
[
j
]
+
2
*
psi2
[
j
]
+
pow
(
psi2
[
j
],
2
)
/
psi1
[
j
])
*
di2pi
/
Ome_ro
*
weight
;
C
[
i
+
u
*
Nvert
]
=
C
[
i
+
u
*
Nvert
]
+
phi12
[
j
]
/
48
*
(
3
*
psi2
[
j
]
+
2
*
psi1
[
j
]
+
pow
(
psi1
[
j
],
2
)
/
psi2
[
j
])
*
di2pi
/
Ome_ro
*
weight
;
}
if
(
i
==
u
)
{
C
[
i
+
v
*
Nvert
]
=
C
[
i
+
v
*
Nvert
]
+
phi12
[
j
]
/
48
*
(
3
*
psi1
[
j
]
+
2
*
psi2
[
j
]
+
pow
(
psi2
[
j
],
2
)
/
psi1
[
j
])
*
di2pi
/
Ome_ro
*
weight
;
C
[
i
+
w
*
Nvert
]
=
C
[
i
+
w
*
Nvert
]
+
phi12
[
j
]
/
48
*
(
3
*
psi2
[
j
]
+
2
*
psi1
[
j
]
+
pow
(
psi1
[
j
],
2
)
/
psi2
[
j
])
*
di2pi
/
Ome_ro
*
weight
;
}
}
/* remove the identity matrix */
C
[
i
+
i
*
Nvert
]
=
C
[
i
+
i
*
Nvert
]
-
1
;
}
/* Deflation */
for
(
i
=
0
;
i
<
(
Nvert
*
Nvert
);
++
i
)
{
C
[
i
]
=
C
[
i
]
-
defl
;
}
}
/***************************************************************************/
void
mexFunction
(
int
nlhs
,
mxArray
*
plhs
[],
int
nrhs
,
const
mxArray
*
prhs
[])
{
double
*
Cii_l
;
double
*
ind_tr
,
*
XYZv
,
weight
,
defl
,
*
tri_pt4
;
unsigned
int
mind
,
nind
,
mXYZv
,
nXYZv
,
mtri_pt4
,
ntri_pt4
;
if
(
nrhs
!=
5
)
{
mexErrMsgTxt
(
"5 inputs required: ind_tr, XYZv, weight, defl, tri_pt4"
)
;
}
else
if
(
nlhs
>
1
)
{
mexErrMsgTxt
(
"Only ONE output : Cii_lin"
)
;
}
mind
=
mxGetM
(
prhs
[
0
])
;
nind
=
mxGetN
(
prhs
[
0
])
;
if
(
!
mxIsNumeric
(
prhs
[
0
])
||
mxIsComplex
(
prhs
[
0
])
||
mxIsSparse
(
prhs
[
0
])
||
(
nind
!=
3
))
{
mexErrMsgTxt
(
"ind_tr must be a matrix : Ntri x 3"
)
;
}
mXYZv
=
mxGetM
(
prhs
[
1
])
;
nXYZv
=
mxGetN
(
prhs
[
1
])
;
if
(
!
mxIsNumeric
(
prhs
[
1
])
||
mxIsComplex
(
prhs
[
1
])
||
mxIsSparse
(
prhs
[
1
])
||
(
nXYZv
!=
3
)
)
{
mexErrMsgTxt
(
"XYZv must be a matrix : Nvert x 3"
)
;
}
if
(
!
mxIsNumeric
(
prhs
[
2
])
||
mxIsComplex
(
prhs
[
2
])
||
mxIsSparse
(
prhs
[
2
])
||
!
mxIsDouble
(
prhs
[
2
])
||
mxGetN
(
prhs
[
2
])
*
mxGetM
(
prhs
[
2
])
!=
1
)
{
mexErrMsgTxt
(
"weight must be a scalar"
)
;
}
if
(
!
mxIsNumeric
(
prhs
[
3
])
||
mxIsComplex
(
prhs
[
3
])
||
mxIsSparse
(
prhs
[
3
])
||
!
mxIsDouble
(
prhs
[
3
])
||
mxGetN
(
prhs
[
3
])
*
mxGetM
(
prhs
[
3
])
!=
1
)
{
mexErrMsgTxt
(
"defl must be a scalar"
)
;
}
mtri_pt4
=
mxGetM
(
prhs
[
4
])
;
ntri_pt4
=
mxGetN
(
prhs
[
4
])
;
if
(
!
mxIsNumeric
(
prhs
[
4
])
||
mxIsComplex
(
prhs
[
4
])
||
mxIsSparse
(
prhs
[
4
])
||
(
ntri_pt4
!=
3
)
||
(
mtri_pt4
!=
mind
))
{
mexErrMsgTxt
(
"tri_pt4 must be a matrix : Ntri x 3"
)
;
}
plhs
[
0
]
=
mxCreateDoubleMatrix
(
mXYZv
,
mXYZv
,
mxREAL
)
;
Cii_l
=
mxGetPr
(
plhs
[
0
])
;
ind_tr
=
mxGetPr
(
prhs
[
0
])
;
XYZv
=
mxGetPr
(
prhs
[
1
])
;
weight
=
mxGetScalar
(
prhs
[
2
])
;
defl
=
mxGetScalar
(
prhs
[
3
])
;
tri_pt4
=
mxGetPr
(
prhs
[
4
])
;
Cii_linear
(
Cii_l
,
ind_tr
,
mind
,
XYZv
,
mXYZv
,
weight
,
defl
,
tri_pt4
)
;
mxSetPr
(
plhs
[
0
],
Cii_l
)
;
}
Event Timeline
Log In to Comment