Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F120475576
ColocImgLibGadgets.java
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Jul 4, 15:50
Size
4 KB
Mime Type
text/x-java
Expires
Sun, Jul 6, 15:50 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
27194214
Attached To
R6269 BIOP Run Macro
ColocImgLibGadgets.java
View Options
import
ij.IJ
;
import
ij.ImagePlus
;
import
ij.plugin.PlugIn
;
import
java.util.ArrayList
;
import
java.util.Collections
;
import
java.util.List
;
import
java.util.Random
;
import
net.imglib2.Cursor
;
import
net.imglib2.algorithm.math.ImageStatistics
;
import
net.imglib2.img.ImagePlusAdapter
;
import
net.imglib2.img.Img
;
import
net.imglib2.img.ImgFactory
;
import
net.imglib2.img.array.ArrayImgFactory
;
import
net.imglib2.type.NativeType
;
import
net.imglib2.type.numeric.RealType
;
public
class
ColocImgLibGadgets
<
T
extends
RealType
<
T
>
&
NativeType
<
T
>>
implements
PlugIn
{
protected
Img
<
T
>
img1
,
img2
;
@Override
public
void
run
(
String
arg
)
{
ImagePlus
imp1
=
IJ
.
openImage
(
"/Users/dan/Documents/Dresden/ipf/colocPluginDesign/red.tif"
);
img1
=
ImagePlusAdapter
.
wrap
(
imp1
);
ImagePlus
imp2
=
IJ
.
openImage
(
"/Users/dan/Documents/Dresden/ipf/colocPluginDesign/green.tif"
);
img2
=
ImagePlusAdapter
.
wrap
(
imp2
);
double
pearson
=
calculatePearson
();
Img
<
T
>
ranImg
=
generateRandomImageStack
(
img1
,
new
int
[]
{
2
,
2
,
1
});
}
/**
* To randomize blockwise we enumerate the blocks, shuffle that list and
* write the data to their new position based on the shuffled list.
*/
protected
Img
<
T
>
generateRandomImageStack
(
Img
<
T
>
img
,
int
[]
blockDimensions
)
{
int
numberOfDimensions
=
Math
.
min
(
img
.
numDimensions
(),
blockDimensions
.
length
);
int
numberOfBlocks
=
0
;
long
[]
numberOfBlocksPerDimension
=
new
long
[
numberOfDimensions
];
for
(
int
i
=
0
;
i
<
numberOfDimensions
;
i
++){
if
(
img
.
dimension
(
i
)
%
blockDimensions
[
i
]
!=
0
){
System
.
out
.
println
(
"sorry, for now image dims must be divisable by block size"
);
return
null
;
}
numberOfBlocksPerDimension
[
i
]
=
img
.
dimension
(
i
)
/
blockDimensions
[
i
];
numberOfBlocks
*=
numberOfBlocksPerDimension
[
i
];
}
List
<
Integer
>
allTheBlocks
=
new
ArrayList
<
Integer
>(
numberOfBlocks
);
for
(
int
i
=
0
;
i
<
numberOfBlocks
;
i
++){
allTheBlocks
.
add
(
new
Integer
(
i
));
}
Collections
.
shuffle
(
allTheBlocks
,
new
Random
());
Cursor
<
T
>
cursor
=
img
.
cursor
();
// create factories for new image stack
//ContainerFactory containerFactory = new ImagePlusContainerFactory();
ImgFactory
<
T
>
imgFactory
=
new
ArrayImgFactory
<
T
>();
//new ImageFactory<T>(cursor.getType(), containerFactory);
// create a new stack for the random images
final
long
[]
dim
=
new
long
[
img
.
numDimensions
()
];
img
.
dimensions
(
dim
);
Img
<
T
>
randomStack
=
imgFactory
.
create
(
dim
,
img
.
firstElement
().
createVariable
());
// iterate over image data
while
(
cursor
.
hasNext
())
{
cursor
.
fwd
();
T
type
=
cursor
.
get
();
// type.getRealDouble();
}
return
randomStack
;
}
protected
double
calculatePearson
()
{
Cursor
<
T
>
cursor1
=
img1
.
cursor
();
Cursor
<
T
>
cursor2
=
img2
.
cursor
();
double
mean1
=
getImageMean
(
img1
);
double
mean2
=
getImageMean
(
img2
);
// Do some rather simple performance testing
long
startTime
=
System
.
currentTimeMillis
();
double
pearson
=
calculatePearson
(
cursor1
,
mean1
,
cursor2
,
mean2
);
// End performance testing
long
finishTime
=
System
.
currentTimeMillis
();
long
elapsed
=
finishTime
-
startTime
;
// print some output to IJ log
IJ
.
log
(
"mean of ch1: "
+
mean1
+
" "
+
"mean of ch2: "
+
mean2
);
IJ
.
log
(
"Pearson's Coefficient "
+
pearson
);
IJ
.
log
(
"That took: "
+
elapsed
+
" ms"
);
return
pearson
;
}
protected
double
calculatePearson
(
Cursor
<
T
>
cursor1
,
double
mean1
,
Cursor
<
T
>
cursor2
,
double
mean2
)
{
double
pearsonDenominator
=
0
;
double
ch1diffSquaredSum
=
0
;
double
ch2diffSquaredSum
=
0
;
while
(
cursor1
.
hasNext
()
&&
cursor2
.
hasNext
())
{
cursor1
.
fwd
();
cursor2
.
fwd
();
T
type1
=
cursor1
.
get
();
double
ch1diff
=
type1
.
getRealDouble
()
-
mean1
;
T
type2
=
cursor2
.
get
();
double
ch2diff
=
type2
.
getRealDouble
()
-
mean2
;
pearsonDenominator
+=
ch1diff
*
ch2diff
;
ch1diffSquaredSum
+=
(
ch1diff
*
ch1diff
);
ch2diffSquaredSum
+=
(
ch2diff
*
ch2diff
);
}
double
pearsonNumerator
=
Math
.
sqrt
(
ch1diffSquaredSum
*
ch2diffSquaredSum
);
return
pearsonDenominator
/
pearsonNumerator
;
}
protected
double
getImageMean
(
Img
<
T
>
img
)
{
double
sum
=
0
;
Cursor
<
T
>
cursor
=
img
.
cursor
();
while
(
cursor
.
hasNext
())
{
cursor
.
fwd
();
T
type
=
cursor
.
get
();
sum
+=
type
.
getRealDouble
();
}
return
sum
/
ImageStatistics
.
getNumPixels
(
img
);
}
}
Event Timeline
Log In to Comment