Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102447634
AL_Fct.py
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Feb 20, 20:18
Size
43 KB
Mime Type
text/x-python
Expires
Sat, Feb 22, 20:18 (2 d)
Engine
blob
Format
Raw Data
Handle
24320608
Attached To
rJNAL Jupyter notebooks for Linear Algebra
AL_Fct.py
View Options
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 13 16:42:29 2019
@author: jecker, tenderini, ronssin
"""
from
__future__
import
division
import
numpy
as
np
from
IPython.display
import
display
,
Latex
import
plotly
import
plotly.graph_objs
as
go
plotly
.
offline
.
init_notebook_mode
(
connected
=
True
)
from
IPython.core.magic
import
register_cell_magic
from
IPython.display
import
HTML
import
ipywidgets
as
widgets
import
random
from
ipywidgets
import
interact_manual
@register_cell_magic
def
bgc
(
color
):
script
=
(
"var cell = this.closest('.jp-CodeCell');"
"var editor = cell.querySelector('.jp-Editor');"
"editor.style.background='{}';"
"this.parentNode.removeChild(this)"
)
.
format
(
color
)
display
(
HTML
(
'<img src onerror="{}">'
.
format
(
script
)))
###############################################################################
## PRINTS Equations, systems, matrix
def
printMonomial
(
coeff
,
index
=
None
,
include_zeros
=
False
):
"""Prints the monomial coeff*x_{index} in optimal way
:param coeff: value of the coefficient
:type coeff: float
:param index: index of the monomial. If None, only the numerical value of the coefficient is displayed
:type index: int or NoneType
:param include_zeros: if True, monomials of type 0x_n are printed. Defaults to False
:type include_zeros: bool
:return: string representative of the monomial
:rtype: str
"""
if
index
is
not
None
:
coeff
=
abs
(
coeff
)
if
coeff
%
1
:
return
str
(
round
(
coeff
,
3
))
+
(
'x_'
+
str
(
index
)
if
index
is
not
None
else
""
)
elif
not
coeff
:
if
index
is
None
:
return
str
(
0
)
else
:
return
str
(
0
)
+
'x_'
+
str
(
index
)
if
include_zeros
else
""
elif
coeff
==
1
:
return
'x_'
+
str
(
index
)
if
index
is
not
None
else
str
(
int
(
coeff
))
elif
coeff
==
-
1
:
return
'x_'
+
str
(
index
)
if
index
is
not
None
else
str
(
int
(
coeff
))
else
:
return
str
(
int
(
coeff
))
+
(
'x_'
+
str
(
index
)
if
index
is
not
None
else
""
)
def
printPlusMinus
(
coeff
,
include_zeros
=
False
):
"""Prints a plus or minus sign, depending on the sign of the coefficient
:param coeff: value of the coefficient
:type coeff: float
:param include_zeros: if True, 0-coefficients are assigned a "+" sign
:type include_zeros: bool
:return: "+" if the coefficient is positive, "-" if it is negative, "" if it is 0
:rtype: str
"""
if
coeff
>
0
:
return
"+"
elif
coeff
<
0
:
return
"-"
else
:
return
"+"
if
include_zeros
else
""
def
strEq
(
n
,
coeff
):
"""Method that provides the Latex string of a linear equation, given the number of unknowns and the values
of the coefficients. If no coefficient value is provided, then a symbolic equation with `n` unknowns is plotted.
In particular:
* **SYMBOLIC EQUATION**: if the number of unknowns is either 1 or 2, then all the equation is
displayed while, if the number of unknowns is higher than 2, only the first and last term of the equation
are displayed
* **NUMERICAL EQUATION**: whichever the number of unknowns, the whole equation is plotted. Numerical values
of the coefficients are rounded to the third digit
:param n: number of unknowns of the equation
:type n: int
:param coeff: coefficients of the linear equation. It must be [] if a symbolic equation is desired
:type: list[float]
:return: Latex string representing the equation
:rtype: str
"""
Eq
=
''
if
not
len
(
coeff
):
if
n
is
1
:
Eq
=
Eq
+
'a_1x_1 = b'
elif
n
is
2
:
Eq
=
Eq
+
'a_1x_1 + a_2x_2 = b'
else
:
Eq
=
Eq
+
'a_1x_1 + \ldots + '
+
'a_'
+
str
(
n
)
+
'x_'
+
str
(
n
)
+
'= b'
else
:
all_zeros
=
len
(
set
(
coeff
[:
-
1
]))
==
1
and
not
coeff
[
0
]
# check if all lhs coefficients are 0
start_put_sign
=
all_zeros
if
n
is
1
:
Eq
+=
"-"
if
coeff
[
0
]
<
0
else
""
Eq
+=
printMonomial
(
coeff
[
0
],
index
=
1
,
include_zeros
=
all_zeros
)
+
"="
+
printMonomial
(
coeff
[
-
1
])
else
:
Eq
+=
"-"
if
coeff
[
0
]
<
0
else
""
Eq
+=
printMonomial
(
coeff
[
0
],
index
=
1
,
include_zeros
=
all_zeros
)
start_put_sign
=
start_put_sign
or
coeff
[
0
]
is
not
0
for
i
in
range
(
1
,
n
):
Eq
+=
printPlusMinus
(
coeff
[
i
],
include_zeros
=
all_zeros
)
if
start_put_sign
\
else
"-"
if
coeff
[
i
]
<
0
else
""
Eq
+=
printMonomial
(
coeff
[
i
],
index
=
i
+
1
,
include_zeros
=
all_zeros
)
start_put_sign
=
start_put_sign
or
coeff
[
i
]
is
not
0
Eq
+=
"="
+
printMonomial
(
coeff
[
-
1
])
return
Eq
def
printEq
(
coeff
,
b
,
*
args
):
"""Method that prints the Latex string of a linear equation, given the values of the coefficients. If no coefficient
value is provided, then a symbolic equation with `n` unknowns is plotted. In particular:
* **SYMBOLIC EQUATION**: if the number of unknowns is either 1 or 2, then all the equation is
displayed while, if the number of unknowns is higher than 2, only the first and last term of the equation
are displayed
* **NUMERICAL EQUATION**: whichever the number of unknowns, the whole equation is plotted. Numerical values
of the coefficients are rounded to the third digit
:param coeff: coefficients of the left-hand side of the linear equation
:type: list[float]
:param b: right-hand side coefficient of the linear equation
:type b: float
:param *args: optional; if passed, it contains the number of unknowns to be considered. If not passed, all the
unknowns are considered, i.e. n equals the length of the coefficients list
:type: *args: list
"""
if
len
(
args
)
==
1
:
n
=
args
[
0
]
else
:
n
=
len
(
coeff
)
coeff
=
coeff
+
b
texEq
=
'$'
texEq
=
texEq
+
strEq
(
n
,
coeff
)
texEq
=
texEq
+
'$'
display
(
Latex
(
texEq
))
return
def
printSyst
(
A
,
b
,
*
args
):
"""Method that prints a linear system of `n` unknowns and `m` equations. If `A` and `b` are empty, then a symbolic
system is printed; otherwise a system containing the values of the coefficients stored in `A` and `b`, approximated
up to their third digit is printed.
:param A: left-hand side matrix. It must be [] if a symbolic system is desired
:type: list[list[float]]
:param b: right-hand side vector. It must be [] if a symbolic system is desired
:type b: list[float]
:param args: optional; if not empty, it is a list of two integers representing the number of equations of the
linear system (i.e. `m`) and the number of unknowns of the system (i.e. `n`)
:type: list
"""
if
(
len
(
args
)
==
2
)
or
(
len
(
A
)
==
len
(
b
)):
# ensures that MatCoeff has proper dimensions
if
len
(
args
)
==
2
:
m
=
args
[
0
]
n
=
args
[
1
]
else
:
m
=
len
(
A
)
n
=
len
(
A
[
0
])
texSyst
=
'$
\\
begin{cases}'
Eq_list
=
[]
if
len
(
A
)
and
len
(
b
):
if
type
(
b
[
0
])
is
list
:
b
=
np
.
array
(
b
)
.
astype
(
float
)
A
=
np
.
concatenate
((
A
,
b
),
axis
=
1
)
else
:
A
=
[
A
[
i
]
+
[
b
[
i
]]
for
i
in
range
(
0
,
m
)]
# becomes augmented matrix
A
=
np
.
array
(
A
)
# just in case it's not
for
i
in
range
(
m
):
if
not
len
(
A
)
or
not
len
(
b
):
Eq_i
=
''
if
n
is
1
:
Eq_i
=
Eq_i
+
'a_{'
+
str
(
i
+
1
)
+
'1}'
+
'x_1 = b_'
+
str
(
i
+
1
)
elif
n
is
2
:
Eq_i
=
Eq_i
+
'a_{'
+
str
(
i
+
1
)
+
'1}'
+
'x_1 + '
+
'a_{'
+
str
(
i
+
1
)
+
'2}'
+
'x_2 = b_'
+
str
(
i
+
1
)
else
:
Eq_i
=
Eq_i
+
'a_{'
+
str
(
i
+
1
)
+
'1}'
+
'x_1 + \ldots +'
+
'a_{'
+
str
(
i
+
1
)
+
str
(
n
)
+
'}'
+
'x_'
+
str
(
n
)
+
'= b_'
+
str
(
i
+
1
)
else
:
Eq_i
=
strEq
(
n
,
A
[
i
,
:])
# attention A is (A|b)
Eq_list
.
append
(
Eq_i
)
texSyst
=
texSyst
+
Eq_list
[
i
]
+
'
\\\\
'
texSyst
=
texSyst
+
'
\\
end{cases}$'
display
(
Latex
(
texSyst
))
else
:
print
(
"La matrice des coefficients n'a pas les bonnes dimensions"
)
return
def
texMatrix
(
*
args
):
"""Method which produces the Latex string corresponding to the input matrix.
.. note:: if two inputs are passed, they represent A and b respectively; as a result the augmented matrix A|B is
plotted. Otherwise, if the input is unique, just the matrix A is plotted
:param args: input arguments; they could be either a matrix and a vector or a single matrix
:type args: list[list] or list[numpy.ndarray]
:return: Latex string representing the input matrix or the input matrix augmented by the input vector
:rtype: str
"""
if
len
(
args
)
==
2
:
# matrice augmentée
if
not
type
(
args
[
0
])
is
np
.
ndarray
:
A
=
np
.
array
(
args
[
0
])
.
astype
(
float
)
else
:
A
=
args
[
0
]
.
astype
(
float
)
m
=
A
.
shape
[
1
]
if
not
type
(
args
[
1
])
is
np
.
array
:
b
=
np
.
array
(
args
[
1
])
.
astype
(
float
)
else
:
b
=
args
[
1
]
.
astype
(
float
)
A
=
np
.
concatenate
((
A
,
b
),
axis
=
1
)
texApre
=
'
\\
left[
\\
begin{array}{'
texA
=
''
for
i
in
np
.
asarray
(
A
):
texALigne
=
''
texALigne
=
texALigne
+
str
(
round
(
i
[
0
],
4
)
if
i
[
0
]
%
1
else
int
(
i
[
0
]))
if
texA
==
''
:
texApre
=
texApre
+
'c'
for
j
in
i
[
1
:
m
]:
if
texA
==
''
:
texApre
=
texApre
+
'c'
texALigne
=
texALigne
+
' & '
+
str
(
round
(
j
,
4
)
if
j
%
1
else
int
(
j
))
if
texA
==
''
:
texApre
=
texApre
+
'| c'
for
j
in
i
[
m
:]:
if
texA
==
''
:
texApre
=
texApre
+
'c'
texALigne
=
texALigne
+
' & '
+
str
(
round
(
j
,
4
)
if
j
%
1
else
int
(
j
))
texALigne
=
texALigne
+
'
\\\\
'
texA
=
texA
+
texALigne
texA
=
texApre
+
'} '
+
texA
[:
-
2
]
+
'
\\
end{array}
\\
right]'
elif
len
(
args
)
==
1
:
# matrice des coefficients
if
not
type
(
args
[
0
])
is
np
.
ndarray
:
A
=
np
.
array
(
args
[
0
])
.
astype
(
float
)
else
:
A
=
args
[
0
]
.
astype
(
float
)
texApre
=
'
\\
left[
\\
begin{array}{'
texA
=
''
for
i
in
np
.
asarray
(
A
):
texALigne
=
''
texALigne
=
texALigne
+
str
(
round
(
i
[
0
],
4
)
if
i
[
0
]
%
1
else
int
(
i
[
0
]))
if
texA
==
''
:
texApre
=
texApre
+
'c'
for
j
in
i
[
1
:]:
if
texA
==
''
:
texApre
=
texApre
+
'c'
texALigne
=
texALigne
+
' & '
+
str
(
round
(
j
,
4
)
if
j
%
1
else
int
(
j
))
texALigne
=
texALigne
+
'
\\\\
'
texA
=
texA
+
texALigne
texA
=
texApre
+
'} '
+
texA
[:
-
2
]
+
'
\\
end{array}
\\
right]'
else
:
print
(
"Ce n'est pas une matrice des coefficients ni une matrice augmentée"
)
texA
=
''
return
texA
def
printA
(
*
args
):
"""Method which prints the input matrix.
.. note:: if two inputs are passed, they represent A and b respectively; as a result the augmented matrix A|B is
plotted. Otherwise, if the input is unique, just the matrix A is plotted
:param args: input arguments; they could be either a matrix and a vector or a single matrix
:type args: list
"""
texA
=
'$'
+
texMatrix
(
*
args
)
+
'$'
display
(
Latex
(
texA
))
return
def
printEquMatrices
(
*
args
):
"""Method which prints the list of input matrices.
.. note:: if two inputs are passed, they represent the list of coefficient matrices A and the list of rhs b
respectively; as a result the augmented matrices A|B are plotted. Otherwise, if the input is unique, just the
matrices A are plotted
:param args: input arguments; they could be either a list of matrices and a list of vectors or
a single list of matrices
:type args: list
"""
# list of matrices is M=[M1, M2, ..., Mn] where Mi=(Mi|b)
if
len
(
args
)
==
2
:
listOfMatrices
=
args
[
0
]
listOfRhS
=
args
[
1
]
texEqu
=
'$'
+
texMatrix
(
listOfMatrices
[
0
],
listOfRhS
[
0
])
for
i
in
range
(
1
,
len
(
listOfMatrices
)):
texEqu
=
texEqu
+
'
\\
quad
\\
sim
\\
quad'
+
texMatrix
(
listOfMatrices
[
i
],
listOfRhS
[
i
])
texEqu
=
texEqu
+
'$'
display
(
Latex
(
texEqu
))
else
:
listOfMatrices
=
args
[
0
]
texEqu
=
'$'
+
texMatrix
(
listOfMatrices
[
0
])
for
i
in
range
(
1
,
len
(
listOfMatrices
)):
texEqu
=
texEqu
+
'
\\
quad
\\
sim
\\
quad'
+
texMatrix
(
listOfMatrices
[
i
])
texEqu
=
texEqu
+
'$'
display
(
Latex
(
texEqu
))
return
# %% Functions to enter something
def
EnterInt
(
n
=
None
):
"""Function to allow the user to enter a non-negative integer
:param n: first integer, passed to the function. If null or negative or None, an integer is requested to the user.
Defaults to None
:type n: int or NoneType
:return: positive integer
:rtype: int
"""
while
type
(
n
)
is
not
int
or
(
type
(
n
)
is
int
and
n
<=
0
):
try
:
n
=
int
(
n
)
if
n
<=
0
:
print
(
"Le nombre ne peut pas être négatif o zero!"
)
print
(
"Entrez à nouveau: "
)
n
=
input
()
except
:
if
n
is
not
None
:
print
(
"Ce n'est pas un entier!"
)
print
(
"Entrez à nouveau:"
)
n
=
input
()
else
:
print
(
"Entrez un entier positif"
)
n
=
input
()
return
n
def
EnterListReal
(
n
):
"""Function which allows the user to enter a list of `n` real numbers
:param n: number of real numbers in the desired list
:type n: int
:return: list of `n` real numbers
:rtype: list[float]
"""
if
n
<
0
:
print
(
f
"Impossible de générer une liste de {n} nombres réels"
)
elif
n
==
0
:
return
[]
else
:
print
(
f
"Entrez une liste de {n} nombres réels"
)
coeff
=
None
while
type
(
coeff
)
is
not
list
:
try
:
coeff
=
input
()
coeff
=
[
float
(
eval
(
x
))
for
x
in
coeff
.
split
(
','
)]
if
len
(
coeff
)
!=
n
:
print
(
"Vous n'avez pas entré le bon nombre de réels!"
)
print
(
"Entrez à nouveau : "
)
coeff
=
input
()
except
:
print
(
"Ce n'est pas le bon format!"
)
print
(
"Entrez à nouveau"
)
coeff
=
input
()
return
coeff
def
SolOfEq
(
sol
,
coeff
,
i
):
"""Method that verifies if `sol` is a solution to the linear equation `i`with coefficients `coeff`
:param sol: candidate solution vector
:type sol: list
:param coeff: coefficients of the linear equation
:type coeff: list
:param i: index of the equation
:type i: int
:return: True if `sol` is a solution, False otherwise
:rtype: bool
"""
try
:
assert
len
(
sol
)
==
len
(
coeff
)
-
1
except
AssertionError
:
print
(
f
"La suite entrée n'est pas une solution de l'équation {i}; Les dimensions ne correspondent pas"
)
return
False
A
=
np
.
array
(
coeff
[:
-
1
])
isSol
=
abs
(
np
.
dot
(
A
,
sol
)
-
coeff
[
-
1
])
<
1e-8
if
isSol
:
print
(
f
"La suite entrée est une solution de l'équation {i}"
)
else
:
print
(
f
"La suite entrée n'est pas une solution de l'équation {i}"
)
return
isSol
def
SolOfSyst
(
solution
,
A
,
b
):
"""Method that verifies if `solution` is a solution to the linear system with left-hand side matrix `A` and
right-hand side vector `b`
:param solution: candidate solution vector
:type solution: list
:param A: left-hand side matrix of the linear system
:type A: list[list[float]] or numpy.ndarray
:param b: right-hand side vector of the linear system
:type b: list[float] or numpy.ndarray
:return: True if `sol` is a solution, False otherwise
:rtype: bool
"""
try
:
assert
len
(
solution
)
==
(
len
(
A
[
0
])
if
type
(
A
)
is
list
else
A
.
shape
[
1
])
except
AssertionError
:
print
(
f
"La suite entrée n'est pas une solution du système; Les dimensions ne correspondent pas"
)
return
False
A
=
[
A
[
i
]
+
[
b
[
i
]]
for
i
in
range
(
0
,
len
(
A
))]
A
=
np
.
array
(
A
)
isSol
=
[
SolOfEq
(
solution
,
A
[
i
,
:],
i
+
1
)
for
i
in
range
(
len
(
A
))]
if
all
(
isSol
):
print
(
"C'est une solution du système"
)
return
True
else
:
print
(
"Ce n'est pas une solution du système"
)
return
False
# PLOTS WITH PLOTLY #
def
drawLine
(
p
,
d
):
"""Method which allows to plot lines, points and arrows in the 2D-place or 3D-space, using plotly library
:param p: point
:type p: list[list[float]]
:param d: direction vector. If made of all zeros, just the reference point is plotted; if different from 0 a line
passing through `p` and with direction `d` is plotted
:type d: list[list[float]]
:return: generated plot
"""
blue
=
'rgb(51, 214, 255)'
colors
=
[
blue
]
colorscale
=
[[
0.0
,
colors
[
0
]],
[
0.1
,
colors
[
0
]],
[
0.2
,
colors
[
0
]],
[
0.3
,
colors
[
0
]],
[
0.4
,
colors
[
0
]],
[
0.5
,
colors
[
0
]],
[
0.6
,
colors
[
0
]],
[
0.7
,
colors
[
0
]],
[
0.8
,
colors
[
0
]],
[
0.9
,
colors
[
0
]],
[
1.0
,
colors
[
0
]]]
vec
=
0.9
*
np
.
array
(
d
)
if
len
(
p
)
==
2
:
data
=
[]
t
=
np
.
linspace
(
-
5
,
5
,
51
)
s
=
np
.
linspace
(
0
,
1
,
10
)
if
all
(
dd
==
[
0
]
for
dd
in
d
):
vector
=
go
.
Scatter
(
x
=
p
[
0
]
+
s
*
0
,
y
=
p
[
1
]
+
s
*
0
,
marker
=
dict
(
symbol
=
6
,
size
=
12
,
color
=
colors
[
0
]),
name
=
'Point'
)
else
:
trace
=
go
.
Scatter
(
x
=
p
[
0
]
+
t
*
d
[
0
],
y
=
p
[
1
]
+
t
*
d
[
1
],
name
=
'Droite'
)
peak
=
go
.
Scatter
(
x
=
d
[
0
],
y
=
d
[
1
],
marker
=
dict
(
symbol
=
6
,
size
=
12
,
color
=
colors
[
0
]),
showlegend
=
False
)
vector
=
go
.
Scatter
(
x
=
p
[
0
]
+
s
*
d
[
0
],
y
=
p
[
1
]
+
s
*
d
[
1
],
mode
=
'lines'
,
line
=
dict
(
width
=
5
,
color
=
colors
[
0
]),
name
=
'Vecteur directeur'
)
zero
=
go
.
Scatter
(
x
=
t
*
0
,
y
=
t
*
0
,
name
=
'Origine'
,
marker
=
dict
(
symbol
=
6
,
size
=
12
,
color
=
colors
[
0
]),
showlegend
=
False
)
data
.
append
(
vector
)
data
.
append
(
zero
)
if
not
all
(
dd
==
[
0
]
for
dd
in
d
):
data
.
append
(
trace
)
data
.
append
(
peak
)
fig
=
go
.
FigureWidget
(
data
=
data
)
plotly
.
offline
.
iplot
(
fig
)
elif
len
(
p
)
==
3
:
data
=
[
{
'type'
:
'cone'
,
'x'
:
[
1
],
'y'
:
vec
[
1
],
'z'
:
vec
[
2
],
'u'
:
d
[
0
],
'v'
:
d
[
1
],
'w'
:
d
[
2
],
"sizemode"
:
"absolute"
,
'colorscale'
:
colorscale
,
'sizeref'
:
1
,
"showscale"
:
False
,
'hoverinfo'
:
'none'
}
]
t
=
np
.
linspace
(
-
5
,
5
,
51
)
s
=
np
.
linspace
(
0
,
1
,
10
)
zero
=
go
.
Scatter3d
(
x
=
t
*
0
,
y
=
t
*
0
,
z
=
t
*
0
,
name
=
'Origine'
,
marker
=
dict
(
size
=
3
),
showlegend
=
False
)
if
all
(
dd
==
[
0
]
for
dd
in
d
):
vector
=
go
.
Scatter3d
(
x
=
p
[
0
]
+
s
*
0
,
y
=
p
[
1
]
+
s
*
0
,
z
=
p
[
2
]
+
s
*
0
,
marker
=
dict
(
size
=
5
),
name
=
'Point'
)
else
:
trace
=
go
.
Scatter3d
(
x
=
p
[
0
]
+
t
*
d
[
0
],
y
=
p
[
1
]
+
t
*
d
[
1
],
z
=
p
[
2
]
+
t
*
d
[
2
],
mode
=
'lines'
,
name
=
'Droite'
)
vector
=
go
.
Scatter3d
(
x
=
p
[
0
]
+
s
*
d
[
0
],
y
=
p
[
1
]
+
s
*
d
[
1
],
z
=
p
[
2
]
+
s
*
d
[
2
],
mode
=
'lines'
,
line
=
dict
(
width
=
5
,
color
=
colors
[
0
],
dash
=
'solid'
),
name
=
'Vecteur directeur'
,
hoverinfo
=
'none'
)
data
.
append
(
zero
)
data
.
append
(
vector
)
if
not
all
(
dd
==
[
0
]
for
dd
in
d
):
data
.
append
(
trace
)
layout
=
{
'scene'
:
{
'camera'
:
{
'eye'
:
{
'x'
:
-
0.76
,
'y'
:
1.8
,
'z'
:
0.92
}
}
}
}
fig
=
go
.
FigureWidget
(
data
=
data
,
layout
=
layout
)
plotly
.
offline
.
iplot
(
fig
)
return
fig
def
Plot2DSys
(
xL
,
xR
,
p
,
A
,
b
):
"""Function for the graphical visualization of a 2D system of equations, plotting the straight lines characterizing
the different equations appearing in the system
:param xL: left limit of the plot in both coordinates
:type xL: int or float
:param xR: right limit of the plot in both coordinates
:type xR: int or float
:param p: number of points used to draw the straight lines
:type p: int
:param A: matrix of the linear system
:type A: list[list[float]] or numpy.ndarray
:param b: right-hand side vector of the linear system
:type b: list[float] or numpy.ndarray
"""
A
=
[
A
[
i
]
+
[
b
[
i
]]
for
i
in
range
(
0
,
len
(
A
))]
A
=
np
.
array
(
A
)
t
=
np
.
linspace
(
xL
,
xR
,
p
)
data
=
[]
for
i
in
range
(
1
,
len
(
A
)
+
1
):
if
(
abs
(
A
[
i
-
1
,
1
]))
>
abs
(
A
[
i
-
1
,
0
]):
# p0=[0,A[i-1,2]/A[i-1,1]]
# p1=[1,(A[i-1,2]-A[i-1,0])/A[i-1,1]]
trace
=
go
.
Scatter
(
x
=
t
,
y
=
(
A
[
i
-
1
,
2
]
-
A
[
i
-
1
,
0
]
*
t
)
/
A
[
i
-
1
,
1
],
name
=
'Droite
%d
'
%
i
)
else
:
trace
=
go
.
Scatter
(
x
=
(
A
[
i
-
1
,
2
]
-
A
[
i
-
1
,
1
]
*
t
)
/
A
[
i
-
1
,
0
],
y
=
t
,
name
=
'Droite
%d
'
%
i
)
data
.
append
(
trace
)
fig
=
go
.
Figure
(
data
=
data
)
plotly
.
offline
.
iplot
(
fig
)
return
def
Plot3DSys
(
xL
,
xR
,
p
,
A
,
b
):
"""Function for the graphical visualization of a 3D system of equations, plotting the straight lines characterizing
the different equations appearing in the system
:param xL: left limit of the plot in all coordinates
:type xL: int or float
:param xR: right limit of the plot in all coordinates
:type xR: int or float
:param p: number of points used to draw the straight lines
:type p: int
:param A: matrix of the linear system
:type A: list[list[float]] or numpy.ndarray
:param b: right-hand side vector of the linear system
:type b: list[float] or numpy.ndarray
"""
A
=
[
A
[
i
]
+
[
b
[
i
]]
for
i
in
range
(
0
,
len
(
A
))]
A
=
np
.
array
(
A
)
gr
=
'rgb(102,255,102)'
org
=
'rgb(255,117,26)'
# red = 'rgb(255,0,0)'
blue
=
'rgb(51, 214, 255)'
colors
=
[
blue
,
gr
,
org
]
s
=
np
.
linspace
(
xL
,
xR
,
p
)
t
=
np
.
linspace
(
xL
,
xR
,
p
)
tGrid
,
sGrid
=
np
.
meshgrid
(
s
,
t
)
data
=
[]
for
i
in
range
(
len
(
A
)):
colorscale
=
[[
0.0
,
colors
[
i
]],
[
0.1
,
colors
[
i
]],
[
0.2
,
colors
[
i
]],
[
0.3
,
colors
[
i
]],
[
0.4
,
colors
[
i
]],
[
0.5
,
colors
[
i
]],
[
0.6
,
colors
[
i
]],
[
0.7
,
colors
[
i
]],
[
0.8
,
colors
[
i
]],
[
0.9
,
colors
[
i
]],
[
1.0
,
colors
[
i
]]]
j
=
i
+
1
if
(
abs
(
A
[
i
,
2
]))
>
abs
(
A
[
i
,
1
]):
# z en fonction de x,y
x
=
sGrid
y
=
tGrid
surface
=
go
.
Surface
(
x
=
x
,
y
=
y
,
z
=
(
A
[
i
,
3
]
-
A
[
i
,
0
]
*
x
-
A
[
i
,
1
]
*
y
)
/
A
[
i
,
2
],
showscale
=
False
,
showlegend
=
True
,
colorscale
=
colorscale
,
opacity
=
1
,
name
=
'Plan
%d
'
%
j
)
elif
A
[
i
,
2
]
==
0
and
A
[
i
,
1
]
==
0
:
# x =b
y
=
sGrid
z
=
tGrid
surface
=
go
.
Surface
(
x
=
A
[
i
,
3
]
-
A
[
i
,
1
]
*
y
,
y
=
y
,
z
=
z
,
showscale
=
False
,
showlegend
=
True
,
colorscale
=
colorscale
,
opacity
=
1
,
name
=
'Plan
%d
'
%
j
)
else
:
# y en fonction de x,z
x
=
sGrid
z
=
tGrid
surface
=
go
.
Surface
(
x
=
x
,
y
=
(
A
[
i
,
3
]
-
A
[
i
,
0
]
*
x
-
A
[
i
,
2
]
*
z
)
/
A
[
i
,
1
],
z
=
z
,
showscale
=
False
,
showlegend
=
True
,
colorscale
=
colorscale
,
opacity
=
1
,
name
=
'Plan
%d
'
%
j
)
data
.
append
(
surface
)
layout
=
go
.
Layout
(
showlegend
=
True
,
# not there WHY???? --> LEGEND NOT YET IMPLEMENTED FOR SURFACE OBJECTS!!
legend
=
dict
(
orientation
=
"h"
),
autosize
=
True
,
width
=
800
,
height
=
800
,
scene
=
go
.
layout
.
Scene
(
xaxis
=
dict
(
gridcolor
=
'rgb(255, 255, 255)'
,
zerolinecolor
=
'rgb(255, 255, 255)'
,
showbackground
=
True
,
backgroundcolor
=
'rgb(230, 230,230)'
),
yaxis
=
dict
(
gridcolor
=
'rgb(255, 255, 255)'
,
zerolinecolor
=
'rgb(255, 255, 255)'
,
showbackground
=
True
,
backgroundcolor
=
'rgb(230, 230,230)'
),
zaxis
=
dict
(
gridcolor
=
'rgb(255, 255, 255)'
,
zerolinecolor
=
'rgb(255, 255, 255)'
,
showbackground
=
True
,
backgroundcolor
=
'rgb(230, 230,230)'
)
)
)
fig
=
go
.
Figure
(
data
=
data
,
layout
=
layout
)
plotly
.
offline
.
iplot
(
fig
)
return
def
isDiag
(
M
):
"""Method which checks if a matrix is diagonal
:param M: input matrix
:type M: list[list[float]] or numpy.ndarray
:return: True if M is diagonal else False
:rtype: bool
"""
if
not
type
(
M
)
is
np
.
ndarray
:
M
=
np
.
array
(
M
)
i
,
j
=
M
.
shape
try
:
assert
i
==
j
except
AssertionError
:
print
(
"A non-squared matrix cannot be diagonal!"
)
return
False
test
=
M
.
reshape
(
-
1
)[:
-
1
]
.
reshape
(
i
-
1
,
j
+
1
)
return
~
np
.
any
(
test
[:,
1
:])
def
isSym
(
M
):
"""Method which checks if a matrix is symmetric
:param M: input matrix
:type M: list[list[float]] or numpy.ndarray
:return: True if M is symmetric else False
:rtype: bool
"""
if
not
type
(
M
)
is
np
.
ndarray
:
M
=
np
.
array
(
M
)
i
,
j
=
M
.
shape
try
:
assert
i
==
j
except
AssertionError
:
print
(
"A non-squared matrix cannot be symmetric!"
)
return
False
return
~
np
.
any
(
M
-
np
.
transpose
(
M
))
# ECHELONNAGE #
def
echZero
(
indice
,
M
):
"""Method which sets to zero the entries of matrix M that correspond to a True value in the boolean vector indice
:param indice: vector of booleans; if an element is True, it means that the element with the corresponding index in
matrix M must be set to 0
:type indice: list[bool]
:param M: matrix to be processed
:type: numpy.ndarray
:return: processed matrix M, where the given entries have been properly set to 0
:rtype: numpy.ndarray
"""
Mat
=
M
[
not
indice
,
:]
.
ravel
()
Mat
=
np
.
concatenate
([
Mat
,
M
[
indice
,
:]
.
ravel
()])
Mat
=
Mat
.
reshape
(
len
(
M
),
len
(
M
[
0
,
:]))
return
Mat
def
Eij
(
M
,
i
,
j
):
"""Method to swap line `i` and line `j` of matrix `M`
:param M: matrix to be processed
:type M: numpy.ndarray
:param i: first line index
:type i: int
:param j: second line index
:type j: int
:return: processed matrix, with line `i` and `j` having been swapped
:rtype: numpy.ndarray
"""
M
=
np
.
array
(
M
)
M
[[
i
,
j
],
:]
=
M
[[
j
,
i
],
:]
return
M
def
Ealpha
(
M
,
i
,
alpha
):
"""Method to multiply line `i` of matrix `M` by the scalar coefficient `alpha`
:param M: matrix to be processed
:type M: numpy.ndarray
:param i: reference line index
:type i: int
:param alpha: scalar coefficient
:type alpha: float
:return: processed matrix, with line `i` multiplied by the scalar `alpha`
:rtype: numpy.ndarray
"""
M
=
np
.
array
(
M
)
M
[
i
,
:]
=
alpha
*
M
[
i
,
:]
return
M
def
Eijalpha
(
M
,
i
,
j
,
alpha
):
"""Method to add to line `i` of matrix `M` line `j` of the same matrix, multiplied by the scalar coefficient `alpha`
:param M: matrix to be processed
:type M: numpy.ndarray
:param i: line to be modified
:type i: int
:param j: line whose multiple has tobe added to line `i`
:type j: int
:param alpha: scalar coefficient
:type alpha: float
:return: processed matrix, with line `i` being summed up with line `j` multiplied by `alpha`
:rtype: numpy.ndarray
"""
M
=
np
.
array
(
M
)
M
[
i
,
:]
=
M
[
i
,
:]
+
alpha
*
M
[
j
,
:]
return
M
def
echelonMat
(
ech
,
*
args
):
"""Method to perform Gauss elimination on either the matrix of the coefficients (if `len(args)==1`) or on the
augmented matrix (if `len(args)==2`); the elimination can be either in standard form (if `ech=='E` or in reduced
form (if `ech=='ER'`).
:param ech:
:type ech:
:param args:
:type args:
:return:
:rtype:
"""
if
len
(
args
)
==
2
:
# matrice augmentée
A
=
np
.
array
(
args
[
0
])
.
astype
(
float
)
m
=
A
.
shape
[
0
]
n
=
A
.
shape
[
1
]
b
=
args
[
1
]
if
type
(
b
[
0
])
==
list
:
b
=
np
.
array
(
b
)
.
astype
(
float
)
A
=
np
.
concatenate
((
A
,
b
),
axis
=
1
)
else
:
b
=
[
b
[
i
]
for
i
in
range
(
m
)]
A
=
[
A
[
i
]
+
[
b
[
i
]]
for
i
in
range
(
0
,
m
)]
else
:
# matrice coeff
A
=
np
.
array
(
args
[
0
])
.
astype
(
float
)
m
=
A
.
shape
[
0
]
n
=
A
.
shape
[
1
]
if
ech
==
'E'
:
# Echelonnée
Mat
=
np
.
array
(
A
)
Mat
=
Mat
.
astype
(
float
)
# in case the array in int instead of float.
numPivot
=
0
for
i
in
range
(
len
(
Mat
)):
j
=
i
while
all
(
abs
(
Mat
[
j
:,
i
])
<
1e-15
)
and
j
!=
len
(
Mat
[
0
,
:])
-
1
:
# if column (or rest of) is 0, take next
j
+=
1
if
j
==
len
(
Mat
[
0
,
:])
-
1
:
if
len
(
Mat
[
0
,
:])
>
j
:
Mat
[
i
+
1
:
len
(
Mat
),
:]
=
0
break
if
abs
(
Mat
[
i
,
j
])
<
1e-15
:
Mat
[
i
,
j
]
=
0
zero
=
abs
(
Mat
[
i
:,
j
])
<
1e-15
M
=
echZero
(
zero
,
Mat
[
i
:,
:])
Mat
[
i
:,
:]
=
M
Mat
=
Ealpha
(
Mat
,
i
,
1
/
Mat
[
i
,
j
])
# usually Mat[i,j]!=0
for
k
in
range
(
i
+
1
,
len
(
A
)):
Mat
=
Eijalpha
(
Mat
,
k
,
i
,
-
Mat
[
k
,
j
])
# Mat[k,:]=[0 if abs(Mat[k,l])<1e-15 else Mat[k,l] for l in range(len(MatCoeff[0,:]))]
numPivot
+=
1
Mat
[
abs
(
Mat
)
<
1e-15
]
=
0
print
(
"La matrice est sous la forme échelonnée"
)
if
len
(
args
)
==
2
:
printEquMatrices
([
A
[:,
:
n
],
Mat
[:,
:
n
]],
[
A
[:,
n
:],
Mat
[:,
n
:]])
else
:
printEquMatrices
([
A
,
Mat
])
elif
ech
==
'ER'
:
# Echelonnée réduite
Mat
=
np
.
array
(
A
)
Mat
=
Mat
.
astype
(
float
)
# in case the array in int instead of float.
numPivot
=
0
for
i
in
range
(
len
(
Mat
)):
j
=
i
while
all
(
abs
(
Mat
[
j
:,
i
])
<
1e-15
)
and
j
!=
len
(
Mat
[
0
,
:])
-
1
:
# if column (or rest of) is zero, take next column
j
+=
1
if
j
==
len
(
Mat
[
0
,
:])
-
1
:
# ADD ZERO LINES BELOW!!!!!!
if
len
(
Mat
[
0
,
:])
>
j
:
Mat
[
i
+
1
:
len
(
Mat
),
:]
=
0
break
if
abs
(
Mat
[
i
,
j
])
<
1e-15
:
Mat
[
i
,
j
]
=
0
zero
=
abs
(
Mat
[
i
:,
j
])
<
1e-15
M
=
echZero
(
zero
,
Mat
[
i
:,
:])
Mat
[
i
:,
:]
=
M
Mat
=
Ealpha
(
Mat
,
i
,
1
/
Mat
[
i
,
j
])
# normalement Mat[i,j]!=0
for
k
in
range
(
i
+
1
,
len
(
A
)):
Mat
=
Eijalpha
(
Mat
,
k
,
i
,
-
Mat
[
k
,
j
])
# Mat[k,:]=[0 if abs(Mat[k,l])<1e-15 else Mat[k,l] for l in range(len(MatCoeff[0,:]))]
numPivot
+=
1
Mat
[
abs
(
Mat
)
<
1e-15
]
=
0
print
(
"La matrice est sous la forme échelonnée"
)
if
len
(
args
)
==
2
:
printEquMatrices
([
A
[:,
:
n
],
Mat
[:,
:
n
]],
[
A
[:,
n
:],
Mat
[:,
n
:]])
else
:
printEquMatrices
([
np
.
asmatrix
(
A
),
np
.
asmatrix
(
Mat
)])
Mat
=
np
.
array
(
Mat
)
i
=
(
len
(
Mat
)
-
1
)
while
i
>=
1
:
while
all
(
abs
(
Mat
[
i
,
:
len
(
Mat
[
0
])
-
1
])
<
1e-15
)
and
i
!=
0
:
# if ligne (or rest of) is zero, take next ligne
i
-=
1
# we have a lign with one non-nul element
j
=
i
# we can start at pos ij at least the pivot is there
if
abs
(
Mat
[
i
,
j
])
<
1e-15
:
# if element Aij=0 take next one --> find pivot
j
+=
1
# Aij!=0 and Aij==1 if echelonMat worked
for
k
in
range
(
i
):
# put zeros above pivot (which is 1 now)
Mat
=
Eijalpha
(
Mat
,
k
,
i
,
-
Mat
[
k
,
j
])
i
-=
1
print
(
"La matrice est sous la forme échelonnée réduite"
)
if
len
(
args
)
==
2
:
printEquMatrices
([
A
[:,
:
n
],
Mat
[:,
:
n
]],
[
A
[:,
n
:],
Mat
[:,
n
:]])
else
:
printEquMatrices
([
A
,
Mat
])
else
:
print
(
f
"Méthode d'échelonnage non reconnue {ech}. Méthodes disponibles: 'E' (pour la forme échelonnée standard)"
f
", 'ER' (pour la forme échelonnée réduite))"
)
return
np
.
asmatrix
(
Mat
)
def
randomA
():
"""Method which generates a random matrix with rows and columns within 1 and 10 and integer entries between -100
and 100
:return: generated random matrix
:rtype: numpy.ndarray
"""
n
=
random
.
randint
(
1
,
10
)
m
=
random
.
randint
(
1
,
10
)
A
=
[[
random
.
randint
(
-
100
,
100
)
for
i
in
range
(
n
)]
for
j
in
range
(
m
)]
printA
(
A
)
return
np
.
array
(
A
)
def
dimensionA
(
A
):
"""Method which allows the user to enter the matrix dimensions and verifies whether they are correct or not
:param A: reference matrix
:type A: numpy.ndarray
"""
m
=
widgets
.
IntText
(
value
=
1
,
step
=
1
,
description
=
'm:'
,
disabled
=
False
)
n
=
widgets
.
IntText
(
value
=
1
,
step
=
1
,
description
=
'n:'
,
disabled
=
False
)
display
(
m
)
display
(
n
)
def
f
():
if
m
.
value
==
A
.
shape
[
0
]
and
n
.
value
==
A
.
shape
[
1
]:
print
(
'Correcte!'
)
else
:
print
(
'Incorrecte, entrez de nouvelles valeurs'
)
interact_manual
(
f
)
return
def
manualEch
(
*
args
):
"""Method which allows the user to perform the Gauss elimination method on the given input matrix, eventually
extended by the right-hand side vector.
:param args:
:type args:
:return:
:rtype:
"""
if
len
(
args
)
==
2
:
# matrice augmentée
A
=
np
.
array
(
args
[
0
])
.
astype
(
float
)
m
=
A
.
shape
[
0
]
b
=
args
[
1
]
if
type
(
b
[
0
])
is
list
:
b
=
np
.
array
(
b
)
.
astype
(
float
)
A
=
np
.
concatenate
((
A
,
b
),
axis
=
1
)
else
:
b
=
[
b
[
i
]
for
i
in
range
(
m
)]
A
=
[
A
[
i
]
+
[
b
[
i
]]
for
i
in
range
(
m
)]
else
:
A
=
np
.
array
(
args
[
0
])
.
astype
(
float
)
m
=
A
.
shape
[
0
]
j
=
widgets
.
BoundedIntText
(
value
=
1
,
min
=
1
,
max
=
m
,
step
=
1
,
description
=
'Ligne j:'
,
disabled
=
False
)
i
=
widgets
.
BoundedIntText
(
value
=
1
,
min
=
1
,
max
=
m
,
step
=
1
,
description
=
'Ligne i:'
,
disabled
=
False
)
r
=
widgets
.
RadioButtons
(
options
=
[
'Tij'
,
'Di(alpha)'
,
'Lij(alpha)'
,
'Revert'
],
description
=
'Opératin:'
,
disabled
=
False
)
alpha
=
widgets
.
Text
(
value
=
'1'
,
description
=
'Coeff. alpha:'
,
disabled
=
False
)
print
(
"Régler les paramètres et évaluer la cellule suivante"
)
print
(
"Répéter cela jusqu'à obtenir une forme échelonnée réduite"
)
display
(
r
)
display
(
i
)
display
(
j
)
display
(
alpha
)
return
i
,
j
,
r
,
alpha
def
echelonnage
(
i
,
j
,
r
,
alpha
,
A
,
m
,
*
args
):
"""Method which performs the Gauss elimination method step described by `r.value` with parameters `ì`, `j` and
`alpha` on matrix `A`
:param i: first reference line
:type i: ipywidgets.Text
:param j: second reference line
:type j: ipywidgets.Text
:param r: RadioButton describing the elementary matricial operation to be performed
:type r: ipywidgets.radioButton
:param alpha: scalar coefficient
:type alpha: ipywidgets.Text
:param A: starting matrix
:type A: numpy.ndarray
:param m: starting augmented matrix
:type m: numpy.ndarray
:param args: either the list of matrices or both the list of matrices and rhs having bee built during the
application of the methos
:type args: list[numpy.ndarray] or tuple(list[numpy.ndarray], list[numpy.ndarray])
:return: processed matrix
:rtype: numpy.ndarray
"""
m
=
np
.
array
(
m
)
.
astype
(
float
)
if
alpha
.
value
==
0
and
r
.
value
in
{
'Di(alpha)'
,
'Lij(alpha)'
}:
print
(
'Le coefficient alpha doit être non-nul!'
)
if
r
.
value
==
'Tij'
:
m
=
Eij
(
m
,
i
.
value
-
1
,
j
.
value
-
1
)
if
r
.
value
==
'Di(alpha)'
:
m
=
Ealpha
(
m
,
i
.
value
-
1
,
eval
(
alpha
.
value
))
if
r
.
value
==
'Lij(alpha)'
:
m
=
Eijalpha
(
m
,
i
.
value
-
1
,
j
.
value
-
1
,
eval
(
alpha
.
value
))
if
len
(
args
)
==
2
:
A
=
np
.
asmatrix
(
A
)
MatriceList
=
args
[
0
]
RhSList
=
args
[
1
]
if
r
.
value
!=
'Revert'
:
MatriceList
.
append
(
m
[:,
:
A
.
shape
[
1
]])
RhSList
.
append
(
m
[:,
A
.
shape
[
1
]:])
else
:
if
len
(
MatriceList
)
>
1
and
len
(
RhSList
)
>
1
:
MatriceList
.
pop
()
RhSList
.
pop
()
mat
=
MatriceList
[
-
1
]
rhs
=
RhSList
[
-
1
]
m
=
np
.
concatenate
((
mat
,
rhs
),
axis
=
1
)
else
:
print
(
"Impossible de revenir sur l'opération!"
)
printEquMatrices
(
MatriceList
,
RhSList
)
elif
len
(
args
)
==
1
:
MatriceList
=
args
[
0
]
if
r
.
value
!=
'Revert'
:
MatriceList
.
append
(
m
)
else
:
if
len
(
MatriceList
)
>
1
:
MatriceList
.
pop
()
m
=
MatriceList
[
-
1
]
else
:
print
(
"Impossible de revenir sur l'opération!"
)
printEquMatrices
(
MatriceList
)
else
:
print
(
"La liste des matrices ou des matrices et des vecteurs connus doit être donnée en entrée de la fonction!"
)
raise
ValueError
return
m
def
manualOp
(
*
args
):
"""Method which allows the user to perform elementary operations on the given input matrix, eventually extended by
the right-hand side vector.
:param args:
:type args:
:return:
:rtype:
"""
if
len
(
args
)
==
2
:
# matrice augmentée
A
=
np
.
array
(
args
[
0
])
.
astype
(
float
)
M
=
A
.
shape
[
0
]
b
=
args
[
1
]
if
type
(
b
[
0
])
is
list
:
b
=
np
.
array
(
b
)
.
astype
(
float
)
A
=
np
.
concatenate
((
A
,
b
),
axis
=
1
)
else
:
b
=
[
b
[
i
]
for
i
in
range
(
M
)]
A
=
[
A
[
i
]
+
[
b
[
i
]]
for
i
in
range
(
M
)]
else
:
A
=
np
.
array
(
args
[
0
])
.
astype
(
float
)
M
=
A
.
shape
[
0
]
A
=
np
.
array
(
A
)
# just in case it's not
i
=
widgets
.
BoundedIntText
(
value
=
1
,
min
=
1
,
max
=
M
,
step
=
1
,
description
=
'Ligne i:'
,
disabled
=
False
)
j
=
widgets
.
BoundedIntText
(
value
=
1
,
min
=
1
,
max
=
M
,
step
=
1
,
description
=
'Ligne j:'
,
disabled
=
False
)
r
=
widgets
.
RadioButtons
(
options
=
[
'Tij'
,
'Di(alpha)'
,
'Lij(alpha)'
],
description
=
'Opération:'
,
disabled
=
False
)
alpha
=
widgets
.
Text
(
value
=
'1'
,
description
=
'Coeff. alpha:'
,
disabled
=
False
)
print
(
"Régler les paramètres et cliquer sur RUN INTERACT pour effectuer votre opération"
)
def
f
(
r
,
i
,
j
,
alpha
):
m
=
A
MatriceList
=
[
A
[:,
:
len
(
A
[
0
])
-
1
]]
RhSList
=
[
A
[:,
len
(
A
[
0
])
-
1
:]]
if
alpha
==
0
and
r
!=
'Tij'
:
print
(
'Le coefficient alpha doit être non-nul!'
)
if
r
==
'Tij'
:
m
=
Eij
(
m
,
i
-
1
,
j
-
1
)
if
r
==
'Di(alpha)'
:
m
=
Ealpha
(
m
,
i
-
1
,
eval
(
alpha
))
if
r
==
'Lij(alpha)'
:
m
=
Eijalpha
(
m
,
i
-
1
,
j
-
1
,
eval
(
alpha
))
MatriceList
.
append
(
m
[:,
:
len
(
A
[
0
])
-
1
])
RhSList
.
append
(
m
[:,
len
(
A
[
0
])
-
1
:])
printEquMatricesAug
(
MatriceList
,
RhSList
)
return
interact_manual
(
f
,
r
=
r
,
i
=
i
,
j
=
j
,
alpha
=
alpha
)
return
######################################## OBSOLETE ####################################################################
def
printEquMatricesAug
(
listOfMatrices
,
listOfRhS
):
# list of matrices is M=[M1, M2, ..., Mn] where Mi=(Mi|b)
texEqu
=
'$'
+
texMatrix
(
listOfMatrices
[
0
],
listOfRhS
[
0
])
for
i
in
range
(
1
,
len
(
listOfMatrices
)):
texEqu
=
texEqu
+
'
\\
quad
\\
sim
\\
quad'
+
texMatrix
(
listOfMatrices
[
i
],
listOfRhS
[
i
])
texEqu
=
texEqu
+
'$'
display
(
Latex
(
texEqu
))
def
echelonMatCoeff
(
A
):
# take echelonMAt but without b.
b
=
[
0
for
_
in
range
(
len
(
A
))]
Mat
=
[
A
[
i
]
+
[
b
[
i
]]
for
i
in
range
(
len
(
A
))]
Mat
=
np
.
array
(
Mat
)
Mat
=
Mat
.
astype
(
float
)
# in case the array in int instead of float.
numPivot
=
0
for
i
in
range
(
len
(
Mat
)):
j
=
i
while
all
(
abs
(
Mat
[
j
:,
i
])
<
1e-15
)
and
j
!=
len
(
Mat
[
0
,
:])
-
1
:
# if column (or rest of) is zero, take next column
j
+=
1
if
j
==
len
(
Mat
[
0
,
:])
-
1
:
# ADD ZERO LINES BELOW!!!!!!
if
len
(
Mat
[
0
,
:])
>
j
:
Mat
[
i
+
1
:
len
(
Mat
),
:]
=
0
print
(
"La matrice est sous la forme échelonnée"
)
printEquMatrices
(
np
.
asmatrix
(
A
),
np
.
asmatrix
(
Mat
[:,
:
len
(
A
[
0
])]))
break
if
abs
(
Mat
[
i
,
j
])
<
1e-15
:
Mat
[
i
,
j
]
=
0
zero
=
abs
(
Mat
[
i
:,
j
])
<
1e-15
M
=
echZero
(
zero
,
Mat
[
i
:,
:])
Mat
[
i
:,
:]
=
M
Mat
=
Ealpha
(
Mat
,
i
,
1
/
Mat
[
i
,
j
])
# normalement Mat[i,j]!=0
for
k
in
range
(
i
+
1
,
len
(
A
)):
Mat
=
Eijalpha
(
Mat
,
k
,
i
,
-
Mat
[
k
,
j
])
# Mat[k,:]=[0 if abs(Mat[k,l])<1e-15 else Mat[k,l] for l in range(len(MatCoeff[0,:]))]
numPivot
+=
1
Mat
[
abs
(
Mat
)
<
1e-15
]
=
0
# printA(np.asmatrix(Mat[:, :len(A[0])]))
return
np
.
asmatrix
(
Mat
)
def
echelonRedMat
(
A
,
b
):
Mat
=
echelonMat
(
'ER'
,
A
,
b
)
Mat
=
np
.
array
(
Mat
)
MatAugm
=
np
.
concatenate
((
A
,
b
),
axis
=
1
)
# MatAugm = [A[i]+[b[i]] for i in range(0,len(A))]
i
=
(
len
(
Mat
)
-
1
)
while
i
>=
1
:
while
all
(
abs
(
Mat
[
i
,
:
len
(
Mat
[
0
])
-
1
])
<
1e-15
)
and
i
!=
0
:
# if ligne (or rest of) is zero, take next ligne
i
-=
1
# we have a lign with one non-nul element
j
=
i
# we can start at pos ij at least the pivot is there
if
abs
(
Mat
[
i
,
j
])
<
1e-15
:
# if element Aij=0 take next one --> find pivot
j
+=
1
# Aij!=0 and Aij==1 if echelonMat worked
for
k
in
range
(
i
):
# put zeros above pivot (which is 1 now)
Mat
=
Eijalpha
(
Mat
,
k
,
i
,
-
Mat
[
k
,
j
])
i
-=
1
printA
(
Mat
)
print
(
"La matrice est sous la forme échelonnée réduite"
)
printEquMatrices
(
MatAugm
,
Mat
)
return
np
.
asmatrix
(
Mat
)
def
printEquMatricesOLD
(
listOfMatrices
):
# list of matrices is M=[M1, M2, ..., Mn]
texEqu
=
'$'
+
texMatrix
(
listOfMatrices
[
0
])
for
i
in
range
(
1
,
len
(
listOfMatrices
)):
texEqu
=
texEqu
+
'
\\
quad
\\
sim
\\
quad'
+
texMatrix
(
listOfMatrices
[
i
])
texEqu
=
texEqu
+
'$'
display
(
Latex
(
texEqu
))
return
def
texMatrixAug
(
A
,
b
):
# return tex expression of one matrix (A|b) where b can also be a matrix
m
=
len
(
A
[
0
])
A
=
np
.
concatenate
((
A
,
b
),
axis
=
1
)
texApre
=
'
\\
left(
\\
begin{array}{'
texA
=
''
for
i
in
np
.
asarray
(
A
):
texALigne
=
''
texALigne
=
texALigne
+
str
(
round
(
i
[
0
],
3
)
if
i
[
0
]
%
1
else
int
(
i
[
0
]))
if
texA
==
''
:
texApre
=
texApre
+
'c'
for
j
in
i
[
1
:
m
]:
if
texA
==
''
:
texApre
=
texApre
+
'c'
texALigne
=
texALigne
+
' & '
+
str
(
round
(
j
,
3
)
if
j
%
1
else
int
(
j
))
if
texA
==
''
:
texApre
=
texApre
+
'| c'
for
j
in
i
[
m
:]:
if
texA
==
''
:
texApre
=
texApre
+
'c'
texALigne
=
texALigne
+
' & '
+
str
(
round
(
j
,
3
)
if
j
%
1
else
int
(
j
))
texALigne
=
texALigne
+
'
\\\\
'
texA
=
texA
+
texALigne
texA
=
texApre
+
'} '
+
texA
[:
-
2
]
+
'
\\
end{array}
\\
right)'
return
texA
def
printAAug
(
A
,
b
):
# Print matrix (A|b)
texA
=
'$'
+
texMatrixAug
(
A
,
b
)
+
'$'
display
(
Latex
(
texA
))
return
def
printEquMatricesOLD
(
*
args
):
# M=[M1, M2, ..., Mn] n>1 VERIFIED OK
texEqu
=
'$'
+
texMatrix
(
args
[
0
])
for
i
in
range
(
1
,
len
(
args
)):
texEqu
=
texEqu
+
'
\\
quad
\\
sim
\\
quad'
+
texMatrix
(
args
[
i
])
texEqu
=
texEqu
+
'$'
display
(
Latex
(
texEqu
))
return
Event Timeline
Log In to Comment