Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F119458386
pair_lubricate.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Jun 26, 22:53
Size
15 KB
Mime Type
text/x-c
Expires
Sat, Jun 28, 22:53 (2 d)
Engine
blob
Format
Raw Data
Handle
27007305
Attached To
rLAMMPS lammps
pair_lubricate.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Randy Schunk (SNL)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "pair_lubricate.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "update.h"
#include "memory.h"
#include "random_mars.h"
#include "error.h"
using namespace LAMMPS_NS;
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/* ---------------------------------------------------------------------- */
PairLubricate::PairLubricate(LAMMPS *lmp) : Pair(lmp)
{
single_enable = 0;
random = NULL;
}
/* ---------------------------------------------------------------------- */
PairLubricate::~PairLubricate()
{
if (allocated) {
memory->destroy_2d_int_array(setflag);
memory->destroy_2d_double_array(cutsq);
memory->destroy_2d_double_array(cut);
memory->destroy_2d_double_array(cut_inner);
}
delete random;
}
/* ---------------------------------------------------------------------- */
void PairLubricate::compute(int eflag, int vflag)
{
int i,j,ii,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,fpair,fx,fy,fz,tx,ty,tz;
double rsq,r,h_sep,radi,tfmag;
double vr1,vr2,vr3,vnnr,vn1,vn2,vn3;
double vt1,vt2,vt3,w1,w2,w3,v_shear1,v_shear2,v_shear3;
double omega_t_1,omega_t_2,omega_t_3;
double n_cross_omega_t_1,n_cross_omega_t_2,n_cross_omega_t_3;
double wr1,wr2,wr3,wnnr,wn1,wn2,wn3,inv_inertia;
double P_dot_wrel_1,P_dot_wrel_2,P_dot_wrel_3;
double a_squeeze,a_shear,a_pump,a_twist;
int *ilist,*jlist,*numneigh,**firstneigh;
double PI = 4.0*atan(1.0);
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = vflag_fdotr = 0;
double **x = atom->x;
double **v = atom->v;
double **f = atom->f;
double **omega = atom->omega;
double **angmom = atom->angmom;
double **torque = atom->torque;
int *type = atom->type;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
int omega_flag = atom->omega_flag;
double vxmu2f = force->vxmu2f;
double prethermostat = sqrt(2.0 * force->boltz * t_target / update->dt);
prethermostat *= sqrt(force->vxmu2f/force->ftm2v/force->mvv2e);
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
a_squeeze = a_shear = a_pump = a_twist = 0.0;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
radi = atom->shape[itype][0];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
r = sqrt(rsq);
// relative translational velocity
vr1 = v[i][0] - v[j][0];
vr2 = v[i][1] - v[j][1];
vr3 = v[i][2] - v[j][2];
// normal component N.(v1-v2) = nn.(v1-v2)
vnnr = vr1*delx + vr2*dely + vr3*delz;
vnnr /= r;
vn1 = delx*vnnr / r;
vn2 = dely*vnnr / r;
vn3 = delz*vnnr / r;
// tangential component -P.(v1-v2)
// P = (I - nn) where n is vector between centers
vt1 = vr1 - vn1;
vt2 = vr2 - vn2;
vt3 = vr3 - vn3;
// additive rotational velocity = omega_1 + omega_2
// use omega directly if it exists, else angmom
// angular momentum = I*omega = 2/5 * M*R^2 * omega
if (omega_flag) {
w1 = omega[i][0] + omega[j][0];
w2 = omega[i][1] + omega[j][1];
w3 = omega[i][2] + omega[j][2];
} else {
inv_inertia = 1.0 / (0.4*atom->mass[itype]*radi*radi);
w1 = inv_inertia * (angmom[i][0] + angmom[j][0]);
w2 = inv_inertia * (angmom[i][1] + angmom[j][1]);
w3 = inv_inertia * (angmom[i][2] + angmom[j][2]);
}
// relative velocities n X P . (v1-v2) = n X (I-nn) . (v1-v2)
v_shear1 = (dely*vt3 - delz*vt2) / r;
v_shear2 = -(delx*vt3 - delz*vt1) / r;
v_shear3 = (delx*vt2 - dely*vt1) / r;
// relative rotation rate P.(omega1 + omega2)
omega_t_1 = w1 - delx*(delx*w1) / rsq;
omega_t_2 = w2 - dely*(dely*w2) / rsq;
omega_t_3 = w3 - delz*(delz*w3) / rsq;
// n X omega_t
n_cross_omega_t_1 = (dely*omega_t_3 - delz*omega_t_2) / r;
n_cross_omega_t_2 = -(delx*omega_t_3 - delz*omega_t_1) / r;
n_cross_omega_t_3 = (delx*omega_t_2 - dely*omega_t_1) / r;
// N.(w1-w2) and P.(w1-w2)
if (omega_flag) {
wr1 = omega[i][0] - omega[j][0];
wr2 = omega[i][1] - omega[j][1];
wr3 = omega[i][2] - omega[j][2];
} else {
wr1 = inv_inertia * (angmom[i][0] - angmom[j][0]);
wr2 = inv_inertia * (angmom[i][1] - angmom[j][1]);
wr3 = inv_inertia * (angmom[i][2] - angmom[j][2]);
}
wnnr = wr1*delx + wr2*dely + wr3*delz;
wn1 = delx*wnnr / rsq;
wn2 = dely*wnnr / rsq;
wn3 = delz*wnnr / rsq;
P_dot_wrel_1 = wr1 - delx*(delx*wr1)/rsq;
P_dot_wrel_2 = wr2 - dely*(dely*wr2)/rsq;
P_dot_wrel_3 = wr3 - delz*(delz*wr3)/rsq;
// compute components of pair-hydro
h_sep = r - 2.0*radi;
if (flag1)
a_squeeze = (3.0*PI*mu*2.0*radi/2.0) * (2.0*radi/4.0/h_sep);
if (flag2)
a_shear = (PI*mu*2.*radi/2.0) *
log(2.0*radi/2.0/h_sep)*(2.0*radi+h_sep)*(2.0*radi+h_sep)/4.0;
if (flag3)
a_pump = (PI*mu*pow(2.0*radi,4)/8.0) *
((3.0/20.0) * log(2.0*radi/2.0/h_sep) +
(63.0/250.0) * (h_sep/2.0/radi) * log(2.0*radi/2.0/h_sep));
if (flag4)
a_twist = (PI*mu*pow(2.0*radi,4)/4.0) *
(h_sep/2.0/radi) * log(2.0/(2.0*h_sep));
if (h_sep >= cut_inner[itype][jtype]) {
fx = -a_squeeze*vn1 - a_shear*(2.0/r)*(2.0/r)*vt1 +
(2.0/r)*a_shear*n_cross_omega_t_1;
fy = -a_squeeze*vn2 - a_shear*(2.0/r)*(2.0/r)*vt2 +
(2.0/r)*a_shear*n_cross_omega_t_2;
fz = -a_squeeze*vn3 - a_shear*(2.0/r)*(2.0/r)*vt3 +
(2.0/r)*a_shear*n_cross_omega_t_3;
fx *= vxmu2f;
fy *= vxmu2f;
fz *= vxmu2f;
// add in thermostat force
tfmag = prethermostat*sqrt(a_squeeze)*(random->uniform()-0.5);
fx -= tfmag * delx/r;
fy -= tfmag * dely/r;
fz -= tfmag * delz/r;
tx = -(2.0/r)*a_shear*v_shear1 - a_shear*omega_t_1 -
a_pump*P_dot_wrel_1 - a_twist*wn1;
ty = -(2.0/r)*a_shear*v_shear2 - a_shear*omega_t_2 -
a_pump*P_dot_wrel_2 - a_twist*wn2;
tz = -(2.0/r)*a_shear*v_shear3 - a_shear*omega_t_3 -
a_pump*P_dot_wrel_3 - a_twist*wn3;
torque[i][0] += vxmu2f * tx;
torque[i][1] += vxmu2f * ty;
torque[i][2] += vxmu2f * tz;
} else {
a_squeeze = (3.0*PI*mu*2.0*radi/2.0) *
(2.0*radi/4.0/cut_inner[itype][jtype]);
fpair = -a_squeeze*vnnr;
fpair *= vxmu2f;
// add in thermostat force
fpair -= prethermostat*sqrt(a_squeeze)*(random->uniform()-0.5);
fx = fpair * delx/r;
fy = fpair * dely/r;
fz = fpair * delz/r;
}
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
if (newton_pair || j < nlocal) {
f[j][0] -= fx;
f[j][1] -= fy;
f[j][2] -= fz;
if (h_sep >= cut_inner[itype][jtype]) {
tx = -(2.0/r)*a_shear*v_shear1 - a_shear*omega_t_1 +
a_pump*P_dot_wrel_1 + a_twist*wn1;
ty = -(2.0/r)*a_shear*v_shear2 - a_shear*omega_t_2 +
a_pump*P_dot_wrel_2 + a_twist*wn2;
tz = -(2.0/r)*a_shear*v_shear3 - a_shear*omega_t_3 +
a_pump*P_dot_wrel_3 + a_twist*wn3;
torque[j][0] += vxmu2f * tx;
torque[j][1] += vxmu2f * ty;
torque[j][2] += vxmu2f * tz;
}
}
if (evflag) ev_tally_xyz(i,j,nlocal,newton_pair,
0.0,0.0,fx,fy,fz,delx,dely,delz);
}
}
}
if (vflag_fdotr) virial_compute();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairLubricate::allocate()
{
allocated = 1;
int n = atom->ntypes;
setflag = memory->create_2d_int_array(n+1,n+1,"pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
cutsq = memory->create_2d_double_array(n+1,n+1,"pair:cutsq");
cut = memory->create_2d_double_array(n+1,n+1,"pair:cut");
cut_inner = memory->create_2d_double_array(n+1,n+1,"pair:cut_inner");
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairLubricate::settings(int narg, char **arg)
{
if (narg != 9) error->all("Illegal pair_style command");
mu = atof(arg[0]);
flag1 = atoi(arg[1]);
flag2 = atoi(arg[2]);
flag3 = atoi(arg[3]);
flag4 = atoi(arg[4]);
cut_inner_global = atof(arg[5]);
cut_global = atof(arg[6]);
t_target = atof(arg[7]);
seed = atoi(arg[8]);
// reset cutoffs that have been explicitly set
if (allocated) {
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i+1; j <= atom->ntypes; j++)
if (setflag[i][j]) {
cut_inner[i][j] = cut_inner_global;
cut[i][j] = cut_global;
}
}
// initialize Marsaglia RNG with processor-unique seed
delete random;
random = new RanMars(lmp,seed + comm->me);
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairLubricate::coeff(int narg, char **arg)
{
if (narg != 2 && narg != 4)
error->all("Incorrect args for pair coefficients");
if (!allocated) allocate();
int ilo,ihi,jlo,jhi;
force->bounds(arg[0],atom->ntypes,ilo,ihi);
force->bounds(arg[1],atom->ntypes,jlo,jhi);
double cut_inner_one = cut_inner_global;
double cut_one = cut_global;
if (narg == 4) {
cut_inner_one = atof(arg[2]);
cut_one = atof(arg[3]);
}
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
cut_inner[i][j] = cut_inner_one;
cut[i][j] = cut_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0) error->all("Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairLubricate::init_style()
{
if (!atom->torque_flag || atom->shape == NULL)
error->all("Pair lubricate requires atom attributes torque, shape");
// insure all particle shapes are spherical
for (int i = 1; i <= atom->ntypes; i++)
if ((atom->shape[i][0] != atom->shape[i][1]) ||
(atom->shape[i][0] != atom->shape[i][2]) ||
(atom->shape[i][1] != atom->shape[i][2]) )
error->all("Pair lubricate requires spherical particles");
// insure mono-dispersity
for (int i = 2; i <= atom->ntypes; i++)
if (atom->shape[i][0] != atom->shape[1][0])
error->all("Pair lubricate requires mono-disperse particles");
int irequest = neighbor->request(this);
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairLubricate::init_one(int i, int j)
{
if (setflag[i][j] == 0) {
cut_inner[i][j] = mix_distance(cut_inner[i][i],cut_inner[j][j]);
cut[i][j] = mix_distance(cut[i][i],cut[j][j]);
}
cut_inner[j][i] = cut_inner[i][j];
return cut[i][j];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairLubricate::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i,j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j],sizeof(int),1,fp);
if (setflag[i][j]) {
fwrite(&cut_inner[i][j],sizeof(double),1,fp);
fwrite(&cut[i][j],sizeof(double),1,fp);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairLubricate::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i,j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) fread(&setflag[i][j],sizeof(int),1,fp);
MPI_Bcast(&setflag[i][j],1,MPI_INT,0,world);
if (setflag[i][j]) {
if (me == 0) {
fread(&cut_inner[i][j],sizeof(double),1,fp);
fread(&cut[i][j],sizeof(double),1,fp);
}
MPI_Bcast(&cut_inner[i][j],1,MPI_DOUBLE,0,world);
MPI_Bcast(&cut[i][j],1,MPI_DOUBLE,0,world);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairLubricate::write_restart_settings(FILE *fp)
{
fwrite(&mu,sizeof(double),1,fp);
fwrite(&flag1,sizeof(int),1,fp);
fwrite(&flag2,sizeof(int),1,fp);
fwrite(&flag3,sizeof(int),1,fp);
fwrite(&flag4,sizeof(int),1,fp);
fwrite(&cut_inner_global,sizeof(double),1,fp);
fwrite(&cut_global,sizeof(double),1,fp);
fwrite(&t_target,sizeof(double),1,fp);
fwrite(&seed,sizeof(int),1,fp);
fwrite(&offset_flag,sizeof(int),1,fp);
fwrite(&mix_flag,sizeof(int),1,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairLubricate::read_restart_settings(FILE *fp)
{
int me = comm->me;
if (me == 0) {
fread(&mu,sizeof(double),1,fp);
fread(&flag1,sizeof(int),1,fp);
fread(&flag2,sizeof(int),1,fp);
fread(&flag3,sizeof(int),1,fp);
fread(&flag4,sizeof(int),1,fp);
fread(&cut_inner_global,sizeof(double),1,fp);
fread(&cut_global,sizeof(double),1,fp);
fread(&t_target, sizeof(double),1,fp);
fread(&seed, sizeof(int),1,fp);
fread(&offset_flag,sizeof(int),1,fp);
fread(&mix_flag,sizeof(int),1,fp);
}
MPI_Bcast(&mu,1,MPI_DOUBLE,0,world);
MPI_Bcast(&flag1,1,MPI_INT,0,world);
MPI_Bcast(&flag2,1,MPI_INT,0,world);
MPI_Bcast(&flag3,1,MPI_INT,0,world);
MPI_Bcast(&flag4,1,MPI_INT,0,world);
MPI_Bcast(&cut_inner_global,1,MPI_DOUBLE,0,world);
MPI_Bcast(&cut_global,1,MPI_DOUBLE,0,world);
MPI_Bcast(&t_target,1,MPI_DOUBLE,0,world);
MPI_Bcast(&seed,1,MPI_INT,0,world);
MPI_Bcast(&offset_flag,1,MPI_INT,0,world);
MPI_Bcast(&mix_flag,1,MPI_INT,0,world);
// additional setup based on restart parameters
delete random;
random = new RanMars(lmp,seed + comm->me);
}
Event Timeline
Log In to Comment