Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F110918156
fix_nh_cuda.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Apr 28, 19:33
Size
61 KB
Mime Type
text/x-c
Expires
Wed, Apr 30, 19:33 (2 d)
Engine
blob
Format
Raw Data
Handle
25848396
Attached To
rLAMMPS lammps
fix_nh_cuda.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Mark Stevens (SNL), Aidan Thompson (SNL)
------------------------------------------------------------------------- */
#include <cstring>
#include <cstdlib>
#include <cmath>
#include "fix_nh_cuda.h"
#include "atom.h"
#include "force.h"
#include "comm.h"
#include "modify.h"
#include "fix_deform.h"
#include "compute.h"
#include "kspace.h"
#include "update.h"
#include "respa.h"
#include "domain.h"
#include "memory.h"
#include "error.h"
#include "math_extra.h"
#include "cuda.h"
#include "fix_nh_cuda_cu.h"
#include "cuda_modify_flags.h"
using namespace LAMMPS_NS;
#define MIN(A,B) ((A) < (B)) ? (A) : (B)
#define MAX(A,B) ((A) > (B)) ? (A) : (B)
enum{NOBIAS,BIAS};
enum{NONE,XYZ,XY,YZ,XZ};
enum{ISO,ANISO,TRICLINIC};
/* ----------------------------------------------------------------------
NVT,NPH,NPT integrators for improved Nose-Hoover equations of motion
---------------------------------------------------------------------- */
FixNHCuda::FixNHCuda(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg)
{
cuda = lmp->cuda;
if(cuda == NULL)
error->all("You cannot use a /cuda class, without activating 'cuda' acceleration. Provide '-c on' as command-line argument to LAMMPS..");
if (narg < 4) error->all("Illegal fix nvt/npt/nph command");
restart_global = 1;
time_integrate = 1;
scalar_flag = 1;
vector_flag = 1;
global_freq = 1;
extscalar = 1;
extvector = 0;
triggerneighsq = -1;
// default values
pcouple = NONE;
drag = 0.0;
allremap = 1;
mtchain = mpchain = 3;
nc_tchain = nc_pchain = 1;
mtk_flag = 1;
deviatoric_flag = 0;
nreset_h0 = 0;
// Used by FixNVTSllod to preserve non-default value
mtchain_default_flag = 1;
tstat_flag = 0;
double t_period = 0.0;
double p_period[6];
for (int i = 0; i < 6; i++) {
p_start[i] = p_stop[i] = p_period[i] = 0.0;
p_flag[i] = 0;
}
// process keywords
dimension = domain->dimension;
int iarg = 3;
while (iarg < narg) {
if (strcmp(arg[iarg],"temp") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
tstat_flag = 1;
t_start = atof(arg[iarg+1]);
t_stop = atof(arg[iarg+2]);
t_period = atof(arg[iarg+3]);
if (t_start < 0.0 || t_stop <= 0.0)
error->all("Target T for fix nvt/npt/nph cannot be 0.0");
iarg += 4;
} else if (strcmp(arg[iarg],"iso") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
pcouple = XYZ;
p_start[0] = p_start[1] = p_start[2] = atof(arg[iarg+1]);
p_stop[0] = p_stop[1] = p_stop[2] = atof(arg[iarg+2]);
p_period[0] = p_period[1] = p_period[2] = atof(arg[iarg+3]);
p_flag[0] = p_flag[1] = p_flag[2] = 1;
if (dimension == 2) {
p_start[2] = p_stop[2] = p_period[2] = 0.0;
p_flag[2] = 0;
}
iarg += 4;
} else if (strcmp(arg[iarg],"aniso") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
pcouple = NONE;
p_start[0] = p_start[1] = p_start[2] = atof(arg[iarg+1]);
p_stop[0] = p_stop[1] = p_stop[2] = atof(arg[iarg+2]);
p_period[0] = p_period[1] = p_period[2] = atof(arg[iarg+3]);
p_flag[0] = p_flag[1] = p_flag[2] = 1;
if (dimension == 2) {
p_start[2] = p_stop[2] = p_period[2] = 0.0;
p_flag[2] = 0;
}
iarg += 4;
} else if (strcmp(arg[iarg],"tri") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
pcouple = NONE;
p_start[0] = p_start[1] = p_start[2] = atof(arg[iarg+1]);
p_stop[0] = p_stop[1] = p_stop[2] = atof(arg[iarg+2]);
p_period[0] = p_period[1] = p_period[2] = atof(arg[iarg+3]);
p_flag[0] = p_flag[1] = p_flag[2] = 1;
p_start[3] = p_start[4] = p_start[5] = 0.0;
p_stop[3] = p_stop[4] = p_stop[5] = 0.0;
p_period[3] = p_period[4] = p_period[5] = atof(arg[iarg+3]);
p_flag[3] = p_flag[4] = p_flag[5] = 1;
if (dimension == 2) {
p_start[2] = p_stop[2] = p_period[2] = 0.0;
p_flag[2] = 0;
p_start[3] = p_stop[3] = p_period[3] = 0.0;
p_flag[3] = 0;
p_start[4] = p_stop[4] = p_period[4] = 0.0;
p_flag[4] = 0;
}
iarg += 4;
} else if (strcmp(arg[iarg],"x") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
p_start[0] = atof(arg[iarg+1]);
p_stop[0] = atof(arg[iarg+2]);
p_period[0] = atof(arg[iarg+3]);
p_flag[0] = 1;
deviatoric_flag = 1;
iarg += 4;
} else if (strcmp(arg[iarg],"y") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
p_start[1] = atof(arg[iarg+1]);
p_stop[1] = atof(arg[iarg+2]);
p_period[1] = atof(arg[iarg+3]);
p_flag[1] = 1;
deviatoric_flag = 1;
iarg += 4;
} else if (strcmp(arg[iarg],"z") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
p_start[2] = atof(arg[iarg+1]);
p_stop[2] = atof(arg[iarg+2]);
p_period[2] = atof(arg[iarg+3]);
p_flag[2] = 1;
deviatoric_flag = 1;
iarg += 4;
if (dimension == 2)
error->all("Invalid fix nvt/npt/nph command for a 2d simulation");
} else if (strcmp(arg[iarg],"yz") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
p_start[3] = atof(arg[iarg+1]);
p_stop[3] = atof(arg[iarg+2]);
p_period[3] = atof(arg[iarg+3]);
p_flag[3] = 1;
deviatoric_flag = 1;
iarg += 4;
if (dimension == 2)
error->all("Invalid fix nvt/npt/nph command for a 2d simulation");
} else if (strcmp(arg[iarg],"xz") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
p_start[4] = atof(arg[iarg+1]);
p_stop[4] = atof(arg[iarg+2]);
p_period[4] = atof(arg[iarg+3]);
p_flag[4] = 1;
deviatoric_flag = 1;
iarg += 4;
if (dimension == 2)
error->all("Invalid fix nvt/npt/nph command for a 2d simulation");
} else if (strcmp(arg[iarg],"xy") == 0) {
if (iarg+4 > narg) error->all("Illegal fix nvt/npt/nph command");
p_start[5] = atof(arg[iarg+1]);
p_stop[5] = atof(arg[iarg+2]);
p_period[5] = atof(arg[iarg+3]);
p_flag[5] = 1;
deviatoric_flag = 1;
iarg += 4;
} else if (strcmp(arg[iarg],"couple") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nvt/npt/nph command");
if (strcmp(arg[iarg+1],"xyz") == 0) pcouple = XYZ;
else if (strcmp(arg[iarg+1],"xy") == 0) pcouple = XY;
else if (strcmp(arg[iarg+1],"yz") == 0) pcouple = YZ;
else if (strcmp(arg[iarg+1],"xz") == 0) pcouple = XZ;
else if (strcmp(arg[iarg+1],"none") == 0) pcouple = NONE;
else error->all("Illegal fix nvt/npt/nph command");
iarg += 2;
} else if (strcmp(arg[iarg],"drag") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nvt/npt/nph command");
drag = atof(arg[iarg+1]);
if (drag < 0.0) error->all("Illegal fix nvt/npt/nph command");
iarg += 2;
} else if (strcmp(arg[iarg],"dilate") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nvt/npt/nph command");
if (strcmp(arg[iarg+1],"all") == 0) allremap = 1;
else if (strcmp(arg[iarg+1],"partial") == 0) allremap = 0;
else error->all("Illegal fix nvt/npt/nph command");
iarg += 2;
} else if (strcmp(arg[iarg],"tchain") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nvt/npt/nph command");
mtchain = atoi(arg[iarg+1]);
if (mtchain < 1) error->all("Illegal fix nvt/npt/nph command");
iarg += 2;
} else if (strcmp(arg[iarg],"pchain") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nvt/npt/nph command");
mpchain = atoi(arg[iarg+1]);
if (mpchain < 0) error->all("Illegal fix nvt/npt/nph command");
iarg += 2;
} else if (strcmp(arg[iarg],"mtk") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nvt/npt/nph command");
if (strcmp(arg[iarg+1],"yes") == 0) mtk_flag = 1;
else if (strcmp(arg[iarg+1],"no") == 0) mtk_flag = 0;
else error->all("Illegal fix nvt/npt/nph command");
iarg += 2;
} else if (strcmp(arg[iarg],"tloop") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nvt/npt/nph command");
nc_tchain = atoi(arg[iarg+1]);
if (nc_tchain < 0) error->all("Illegal fix nvt/npt/nph command");
iarg += 2;
} else if (strcmp(arg[iarg],"ploop") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nvt/npt/nph command");
nc_pchain = atoi(arg[iarg+1]);
if (nc_pchain < 0) error->all("Illegal fix nvt/npt/nph command");
iarg += 2;
} else if (strcmp(arg[iarg],"nreset") == 0) {
if (iarg+2 > narg) error->all("Illegal fix nvt/npt/nph command");
nreset_h0 = atoi(arg[iarg+1]);
if (nreset_h0 < 0) error->all("Illegal fix nvt/npt/nph command");
iarg += 2;
} else error->all("Illegal fix nvt/npt/nph command");
}
// error checks
if (dimension == 2 && (p_flag[2] || p_flag[3] || p_flag[4]))
error->all("Invalid fix nvt/npt/nph command for a 2d simulation");
if (dimension == 2 && (pcouple == YZ || pcouple == XZ))
error->all("Invalid fix nvt/npt/nph command for a 2d simulation");
if (pcouple == XYZ && (p_flag[0] == 0 || p_flag[1] == 0))
error->all("Invalid fix nvt/npt/nph command pressure settings");
if (pcouple == XYZ && dimension == 3 && p_flag[2] == 0)
error->all("Invalid fix nvt/npt/nph command pressure settings");
if (pcouple == XY && (p_flag[0] == 0 || p_flag[1] == 0))
error->all("Invalid fix nvt/npt/nph command pressure settings");
if (pcouple == YZ && (p_flag[1] == 0 || p_flag[2] == 0))
error->all("Invalid fix nvt/npt/nph command pressure settings");
if (pcouple == XZ && (p_flag[0] == 0 || p_flag[2] == 0))
error->all("Invalid fix nvt/npt/nph command pressure settings");
if (p_flag[0] && domain->xperiodic == 0)
error->all("Cannot use fix nvt/npt/nph on a non-periodic dimension");
if (p_flag[1] && domain->yperiodic == 0)
error->all("Cannot use fix nvt/npt/nph on a non-periodic dimension");
if (p_flag[2] && domain->zperiodic == 0)
error->all("Cannot use fix nvt/npt/nph on a non-periodic dimension");
if (p_flag[3] && domain->zperiodic == 0)
error->all("Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension");
if (p_flag[4] && domain->zperiodic == 0)
error->all("Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension");
if (p_flag[5] && domain->yperiodic == 0)
error->all("Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension");
if (!domain->triclinic && (p_flag[3] || p_flag[4] || p_flag[5]))
error->all("Can not specify Pxy/Pxz/Pyz in "
"fix nvt/npt/nph with non-triclinic box");
if (pcouple == XYZ && dimension == 3 &&
(p_start[0] != p_start[1] || p_start[0] != p_start[2] ||
p_stop[0] != p_stop[1] || p_stop[0] != p_stop[2] ||
p_period[0] != p_period[1] || p_period[0] != p_period[2]))
error->all("Invalid fix nvt/npt/nph pressure settings");
if (pcouple == XYZ && dimension == 2 &&
(p_start[0] != p_start[1] || p_stop[0] != p_stop[1] ||
p_period[0] != p_period[1]))
error->all("Invalid fix nvt/npt/nph pressure settings");
if (pcouple == XY &&
(p_start[0] != p_start[1] || p_stop[0] != p_stop[1] ||
p_period[0] != p_period[1]))
error->all("Invalid fix nvt/npt/nph pressure settings");
if (pcouple == YZ &&
(p_start[1] != p_start[2] || p_stop[1] != p_stop[2] ||
p_period[1] != p_period[2]))
error->all("Invalid fix nvt/npt/nph pressure settings");
if (pcouple == XZ &&
(p_start[0] != p_start[2] || p_stop[0] != p_stop[2] ||
p_period[0] != p_period[2]))
error->all("Invalid fix nvt/npt/nph pressure settings");
if ((tstat_flag && t_period <= 0.0) ||
(p_flag[0] && p_period[0] <= 0.0) ||
(p_flag[1] && p_period[1] <= 0.0) ||
(p_flag[2] && p_period[2] <= 0.0) ||
(p_flag[3] && p_period[3] <= 0.0) ||
(p_flag[4] && p_period[4] <= 0.0) ||
(p_flag[5] && p_period[5] <= 0.0))
error->all("Fix nvt/npt/nph damping parameters must be > 0.0");
// set pstat_flag and box change variables
pstat_flag = 0;
for (int i = 0; i < 6; i++)
if (p_flag[i]) pstat_flag = 1;
if (pstat_flag) {
box_change = 1;
if (p_flag[0] || p_flag[1] || p_flag[2]) box_change_size = 1;
if (p_flag[3] || p_flag[4] || p_flag[5]) box_change_shape = 1;
no_change_box = 1;
if (allremap == 0) restart_pbc = 1;
}
// pstyle = TRICLINIC if any off-diagonal term is controlled -> 6 dof
// else pstyle = ISO if XYZ coupling or XY coupling in 2d -> 1 dof
// else pstyle = ANISO -> 3 dof
if (p_flag[3] || p_flag[4] || p_flag[5]) pstyle = TRICLINIC;
else if (pcouple == XYZ || (dimension == 2 && pcouple == XY)) pstyle = ISO;
else pstyle = ANISO;
// convert input periods to frequencies
t_freq = 0.0;
p_freq[0] = p_freq[1] = p_freq[2] = p_freq[3] = p_freq[4] = p_freq[5] = 0.0;
if (tstat_flag) t_freq = 1.0 / t_period;
if (p_flag[0]) p_freq[0] = 1.0 / p_period[0];
if (p_flag[1]) p_freq[1] = 1.0 / p_period[1];
if (p_flag[2]) p_freq[2] = 1.0 / p_period[2];
if (p_flag[3]) p_freq[3] = 1.0 / p_period[3];
if (p_flag[4]) p_freq[4] = 1.0 / p_period[4];
if (p_flag[5]) p_freq[5] = 1.0 / p_period[5];
// Nose/Hoover temp and pressure init
size_vector = 0;
if (tstat_flag) {
int ich;
eta = new double[mtchain];
// add one extra dummy thermostat, set to zero
eta_dot = new double[mtchain+1];
eta_dot[mtchain] = 0.0;
eta_dotdot = new double[mtchain];
for (ich = 0; ich < mtchain; ich++) {
eta[ich] = eta_dot[ich] = eta_dotdot[ich] = 0.0;
}
eta_mass = new double[mtchain];
size_vector += 2*2*mtchain;
}
if (pstat_flag) {
omega[0] = omega[1] = omega[2] = 0.0;
omega_dot[0] = omega_dot[1] = omega_dot[2] = 0.0;
omega_mass[0] = omega_mass[1] = omega_mass[2] = 0.0;
omega[3] = omega[4] = omega[5] = 0.0;
omega_dot[3] = omega_dot[4] = omega_dot[5] = 0.0;
omega_mass[3] = omega_mass[4] = omega_mass[5] = 0.0;
if (pstyle == ISO) size_vector += 2*2*1;
else if (pstyle == ANISO) size_vector += 2*2*3;
else if (pstyle == TRICLINIC) size_vector += 2*2*6;
if (mpchain) {
int ich;
etap = new double[mpchain];
// add one extra dummy thermostat, set to zero
etap_dot = new double[mpchain+1];
etap_dot[mpchain] = 0.0;
etap_dotdot = new double[mpchain];
for (ich = 0; ich < mpchain; ich++) {
etap[ich] = etap_dot[ich] =
etap_dotdot[ich] = 0.0;
}
etap_mass = new double[mpchain];
size_vector += 2*2*mpchain;
}
if (deviatoric_flag) size_vector += 1;
}
nrigid = 0;
rfix = NULL;
// initialize vol0,t0 to zero to signal uninitialized
// values then assigned in init(), if necessary
vol0 = t0 = 0.0;
}
/* ---------------------------------------------------------------------- */
FixNHCuda::~FixNHCuda()
{
delete [] rfix;
// delete temperature and pressure if fix created them
if (tflag) modify->delete_compute(id_temp);
delete [] id_temp;
if (tstat_flag) {
delete [] eta;
delete [] eta_dot;
delete [] eta_dotdot;
delete [] eta_mass;
}
if (pstat_flag) {
if (pflag) modify->delete_compute(id_press);
delete [] id_press;
if (mpchain) {
delete [] etap;
delete [] etap_dot;
delete [] etap_dotdot;
delete [] etap_mass;
}
}
}
/* ---------------------------------------------------------------------- */
int FixNHCuda::setmask()
{
int mask = 0;
mask |= INITIAL_INTEGRATE_CUDA;
mask |= FINAL_INTEGRATE_CUDA;
mask |= THERMO_ENERGY_CUDA;
//mask |= INITIAL_INTEGRATE_RESPA;
//mask |= FINAL_INTEGRATE_RESPA;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixNHCuda::init()
{
// insure no conflict with fix deform
if (pstat_flag)
for (int i = 0; i < modify->nfix; i++)
if (strcmp(modify->fix[i]->style,"deform") == 0) {
int *dimflag = ((FixDeform *) modify->fix[i])->dimflag;
if ((p_flag[0] && dimflag[0]) || (p_flag[1] && dimflag[1]) ||
(p_flag[2] && dimflag[2]) || (p_flag[3] && dimflag[3]) ||
(p_flag[4] && dimflag[4]) || (p_flag[5] && dimflag[5]))
error->all("Cannot use fix npt and fix deform on "
"same component of stress tensor");
}
// set temperature and pressure ptrs
int icompute = modify->find_compute(id_temp);
if (icompute < 0)
error->all("Temperature ID for fix nvt/nph/npt does not exist");
temperature = modify->compute[icompute];
if (temperature->tempbias) which = BIAS;
else which = NOBIAS;
if (pstat_flag) {
icompute = modify->find_compute(id_press);
if (icompute < 0) error->all("Pressure ID for fix npt/nph does not exist");
pressure = modify->compute[icompute];
}
// set timesteps and frequencies
dtv = update->dt;
dtf = 0.5 * update->dt * force->ftm2v;
dthalf = 0.5 * update->dt;
dt4 = 0.25 * update->dt;
dt8 = 0.125 * update->dt;
dto = dthalf;
p_freq_max = 0.0;
if (pstat_flag) {
p_freq_max = MAX(p_freq[0],p_freq[1]);
p_freq_max = MAX(p_freq_max,p_freq[2]);
if (pstyle == TRICLINIC) {
p_freq_max = MAX(p_freq_max,p_freq[3]);
p_freq_max = MAX(p_freq_max,p_freq[4]);
p_freq_max = MAX(p_freq_max,p_freq[5]);
}
pdrag_factor = 1.0 - (update->dt * p_freq_max * drag / nc_pchain);
}
if (tstat_flag)
tdrag_factor = 1.0 - (update->dt * t_freq * drag / nc_tchain);
// tally the number of dimensions that are barostatted
// also compute the initial volume and reference cell
// set initial volume and reference cell, if not already done
if (pstat_flag) {
pdim = p_flag[0] + p_flag[1] + p_flag[2];
if (vol0 == 0.0) {
if (dimension == 3) vol0 = domain->xprd * domain->yprd * domain->zprd;
else vol0 = domain->xprd * domain->yprd;
h0_inv[0] = domain->h_inv[0];
h0_inv[1] = domain->h_inv[1];
h0_inv[2] = domain->h_inv[2];
h0_inv[3] = domain->h_inv[3];
h0_inv[4] = domain->h_inv[4];
h0_inv[5] = domain->h_inv[5];
}
}
boltz = force->boltz;
nktv2p = force->nktv2p;
if (force->kspace) kspace_flag = 1;
else kspace_flag = 0;
if (strcmp(update->integrate_style,"respa") == 0) {
nlevels_respa = ((Respa *) update->integrate)->nlevels;
step_respa = ((Respa *) update->integrate)->step;
dto = 0.5*step_respa[0];
}
// detect if any rigid fixes exist so rigid bodies move when box is remapped
// rfix[] = indices to each fix rigid
delete [] rfix;
nrigid = 0;
rfix = NULL;
for (int i = 0; i < modify->nfix; i++)
if (modify->fix[i]->rigid_flag) nrigid++;
if (nrigid) {
rfix = new int[nrigid];
nrigid = 0;
for (int i = 0; i < modify->nfix; i++)
if (modify->fix[i]->rigid_flag) rfix[nrigid++] = i;
}
triggerneighsq= cuda->shared_data.atom.triggerneighsq;
cuda->neighbor_decide_by_integrator=1;
Cuda_FixNHCuda_Init(&cuda->shared_data,dtv,dtf);
}
/* ----------------------------------------------------------------------
compute T,P before integrator starts
------------------------------------------------------------------------- */
void FixNHCuda::setup(int vflag)
{
// initialize some quantities that were not available earlier
//if (mtk_flag) mtk_factor = 1.0 + 1.0/atom->natoms;
//else mtk_factor = 1.0;
tdof = temperature->dof;
// t_target is used by compute_scalar(), even for NPH
if (tstat_flag) t_target = t_start;
else if (pstat_flag) {
// t0 = initial value for piston mass and energy conservation
// cannot be done in init() b/c temperature cannot be called there
// is b/c Modify::init() inits computes after fixes due to dof dependence
// guesstimate a unit-dependent t0 if actual T = 0.0
// if it was read in from a restart file, leave it be
if (t0 == 0.0) {
t0 = temperature->compute_scalar();
if (t0 == 0.0) {
if (strcmp(update->unit_style,"lj") == 0) t0 = 1.0;
else t0 = 300.0;
}
}
t_target = t0;
}
if (pstat_flag) compute_press_target();
t_current = temperature->compute_scalar();
if (pstat_flag) {
if (pstyle == ISO) double tmp = pressure->compute_scalar();
else pressure->compute_vector();
couple();
pressure->addstep(update->ntimestep+1);
}
// initial forces on thermostat variables
if (tstat_flag) {
eta_mass[0] = tdof * boltz * t_target / (t_freq*t_freq);
for (int ich = 1; ich < mtchain; ich++)
eta_mass[ich] = boltz * t_target / (t_freq*t_freq);
for (int ich = 1; ich < mtchain; ich++) {
eta_dotdot[ich] = (eta_mass[ich-1]*eta_dot[ich-1]*eta_dot[ich-1] -
boltz*t_target) / eta_mass[ich];
}
}
if (pstat_flag) {
double kt = boltz * t_target;
double nkt = atom->natoms * kt;
for (int i = 0; i < 3; i++)
if (p_flag[i])
omega_mass[i] = nkt/(p_freq[i]*p_freq[i]);
if (pstyle == TRICLINIC) {
for (int i = 3; i < 6; i++)
if (p_flag[i]) omega_mass[i] = nkt/(p_freq[i]*p_freq[i]);
}
// initial forces on barostat thermostat variables
if (mpchain) {
etap_mass[0] = boltz * t_target / (p_freq_max*p_freq_max);
for (int ich = 1; ich < mpchain; ich++)
etap_mass[ich] = boltz * t_target / (p_freq_max*p_freq_max);
for (int ich = 1; ich < mpchain; ich++)
etap_dotdot[ich] =
(etap_mass[ich-1]*etap_dot[ich-1]*etap_dot[ich-1] -
boltz*t_target) / etap_mass[ich];
}
// compute appropriately coupled elements of mvv_current
//if (mtk_flag) couple_ke();
}
}
/* ----------------------------------------------------------------------
1st half of Verlet update
------------------------------------------------------------------------- */
void FixNHCuda::initial_integrate(int vflag)
{
if(!temperature->cudable) cuda->downloadAll();
if(triggerneighsq!=cuda->shared_data.atom.triggerneighsq)
{
triggerneighsq= cuda->shared_data.atom.triggerneighsq;
Cuda_FixNHCuda_Init(&cuda->shared_data,dtv,dtf);
}
// update eta_press_dot
if (pstat_flag && mpchain) nhc_press_integrate();
// update eta_dot
if (tstat_flag) {
double delta = update->ntimestep - update->beginstep;
delta /= update->endstep - update->beginstep;
t_target = t_start + delta * (t_stop-t_start);
eta_mass[0] = tdof * boltz * t_target / (t_freq*t_freq);
for (int ich = 1; ich < mtchain; ich++)
eta_mass[ich] = boltz * t_target / (t_freq*t_freq);
nhc_temp_integrate();
}
// need to recompute pressure to account for change in KE
// t_current is up-to-date, but compute_temperature is not
// compute appropriately coupled elements of mvv_current
if (pstat_flag) {
if (pstyle == ISO) {
temperature->compute_scalar();
double tmp = pressure->compute_scalar();
} else {
temperature->compute_vector();
pressure->compute_vector();
}
couple();
pressure->addstep(update->ntimestep+1);
//if (mtk_flag) couple_ke();
}
if(which==NOBIAS)
{
if (pstat_flag) {
compute_press_target();
nh_omega_dot();
factor[0] = exp(-dt4*(omega_dot[0]+mtk_term2));
factor[1] = exp(-dt4*(omega_dot[1]+mtk_term2));
factor[2] = exp(-dt4*(omega_dot[2]+mtk_term2));
Cuda_FixNHCuda_nh_v_press_and_nve_v_NoBias(&cuda->shared_data, groupbit, factor,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal,(pstyle == TRICLINIC)?1:0);
}
else
Cuda_FixNHCuda_nve_v(&cuda->shared_data,groupbit,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal);
}
else if(which==BIAS)
{
if(pstat_flag)
{
compute_press_target();
nh_omega_dot();
factor[0] = exp(-dt4*(omega_dot[0]+mtk_term2));
factor[1] = exp(-dt4*(omega_dot[1]+mtk_term2));
factor[2] = exp(-dt4*(omega_dot[2]+mtk_term2));
if(!temperature->cudable)
{
nh_v_press();
cuda->cu_v->upload();
}
else
{
int groupbit_org=temperature->groupbit;
temperature->groupbit=groupbit;
temperature->remove_bias_all();
Cuda_FixNHCuda_nh_v_press(&cuda->shared_data, groupbit, factor,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal,(pstyle == TRICLINIC)?1:0);
temperature->restore_bias_all();
temperature->groupbit=groupbit_org;
}
}
Cuda_FixNHCuda_nve_v(&cuda->shared_data,groupbit,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal);
}
// remap simulation box by 1/2 step
if (pstat_flag) remap();
Cuda_FixNHCuda_nve_x(&cuda->shared_data,groupbit,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal);
// remap simulation box by 1/2 step
// redo KSpace coeffs since volume has changed
if (pstat_flag) {
remap();
if (kspace_flag) force->kspace->setup();
}
}
/* ----------------------------------------------------------------------
2nd half of Verlet update
------------------------------------------------------------------------- */
void FixNHCuda::final_integrate()
{
if(!temperature->cudable) cuda->downloadAll();
if(which==NOBIAS)
{
if(pstat_flag)
{
factor[0] = exp(-dt4*(omega_dot[0]+mtk_term2));
factor[1] = exp(-dt4*(omega_dot[1]+mtk_term2));
factor[2] = exp(-dt4*(omega_dot[2]+mtk_term2));
Cuda_FixNHCuda_nve_v_and_nh_v_press_NoBias(&cuda->shared_data, groupbit, factor,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal,(pstyle == TRICLINIC)?1:0);
}
else
Cuda_FixNHCuda_nve_v(&cuda->shared_data,groupbit,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal);
}
else if(which==BIAS)
{
Cuda_FixNHCuda_nve_v(&cuda->shared_data,groupbit,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal);
if(pstat_flag)
{
factor[0] = exp(-dt4*(omega_dot[0]+mtk_term2));
factor[1] = exp(-dt4*(omega_dot[1]+mtk_term2));
factor[2] = exp(-dt4*(omega_dot[2]+mtk_term2));
if(!temperature->cudable)
{
cuda->cu_v->download();
nh_v_press();
cuda->cu_v->upload();
}
else
{
int groupbit_org=temperature->groupbit;
temperature->groupbit=groupbit;
temperature->remove_bias_all();
Cuda_FixNHCuda_nh_v_press(&cuda->shared_data, groupbit, factor,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal,(pstyle == TRICLINIC)?1:0);
temperature->restore_bias_all();
temperature->groupbit=groupbit_org;
}
}
}
// compute new T,P
// compute appropriately coupled elements of mvv_current
if(!temperature->cudable) cuda->cu_v->download();
t_current = temperature->compute_scalar();
if (pstat_flag) {
if (pstyle == ISO) double tmp = pressure->compute_scalar();
else pressure->compute_vector();
couple();
pressure->addstep(update->ntimestep+1);
}
if (pstat_flag) nh_omega_dot();
// update eta_dot
// update eta_press_dot
if (tstat_flag) nhc_temp_integrate();
if (pstat_flag && mpchain) nhc_press_integrate();
}
/* ---------------------------------------------------------------------- */
void FixNHCuda::initial_integrate_respa(int vflag, int ilevel, int iloop)
{
int i;
// set timesteps by level
dtv = step_respa[ilevel];
dtf = 0.5 * step_respa[ilevel] * force->ftm2v;
dthalf = 0.5 * step_respa[ilevel];
// outermost level - update eta_dot and omega_dot, apply to v, remap box
// all other levels - NVE update of v
// x,v updates only performed for atoms in group
if (ilevel == nlevels_respa-1) {
// update eta_press_dot
if (pstat_flag && mpchain) nhc_press_integrate();
// update eta_dot
if (tstat_flag) {
double delta = update->ntimestep - update->beginstep;
delta /= update->endstep - update->beginstep;
t_target = t_start + delta * (t_stop-t_start);
eta_mass[0] = tdof * boltz * t_target / (t_freq*t_freq);
for (int ich = 1; ich < mtchain; ich++)
eta_mass[ich] = boltz * t_target / (t_freq*t_freq);
nhc_temp_integrate();
}
// recompute pressure to account for change in KE
// t_current is up-to-date, but compute_temperature is not
// compute appropriately coupled elements of mvv_current
if (pstat_flag) {
if (pstyle == ISO) {
temperature->compute_scalar();
double tmp = pressure->compute_scalar();
} else {
temperature->compute_vector();
pressure->compute_vector();
}
couple();
pressure->addstep(update->ntimestep+1);
if (mtk_flag) couple_ke();
}
if (pstat_flag) {
compute_press_target();
nh_omega_dot();
nh_v_press();
}
nve_v();
} else nve_v();
// innermost level - also update x only for atoms in group
// if barostat, perform 1/2 step remap before and after
if (ilevel == 0) {
if (pstat_flag) remap();
nve_x();
if (pstat_flag) remap();
}
// if barostat, redo KSpace coeffs at outermost level,
// since volume has changed
if (ilevel == nlevels_respa-1 && kspace_flag && pstat_flag)
force->kspace->setup();
}
/* ---------------------------------------------------------------------- */
void FixNHCuda::final_integrate_respa(int ilevel, int iloop)
{
// set timesteps by level
dtf = 0.5 * step_respa[ilevel] * force->ftm2v;
dthalf = 0.5 * step_respa[ilevel];
// outermost level - update eta_dot and omega_dot, apply via final_integrate
// all other levels - NVE update of v
if (ilevel == nlevels_respa-1) final_integrate();
else nve_v();
}
/* ---------------------------------------------------------------------- */
void FixNHCuda::couple()
{
double *tensor = pressure->vector;
if (pstyle == ISO)
p_current[0] = p_current[1] = p_current[2] = pressure->scalar;
else if (pcouple == XYZ) {
double ave = 1.0/3.0 * (tensor[0] + tensor[1] + tensor[2]);
p_current[0] = p_current[1] = p_current[2] = ave;
} else if (pcouple == XY) {
double ave = 0.5 * (tensor[0] + tensor[1]);
p_current[0] = p_current[1] = ave;
p_current[2] = tensor[2];
} else if (pcouple == YZ) {
double ave = 0.5 * (tensor[1] + tensor[2]);
p_current[1] = p_current[2] = ave;
p_current[0] = tensor[0];
} else if (pcouple == XZ) {
double ave = 0.5 * (tensor[0] + tensor[2]);
p_current[0] = p_current[2] = ave;
p_current[1] = tensor[1];
} else {
p_current[0] = tensor[0];
p_current[1] = tensor[1];
p_current[2] = tensor[2];
}
// switch order from xy-xz-yz to Voigt
if (pstyle == TRICLINIC) {
p_current[3] = tensor[5];
p_current[4] = tensor[4];
p_current[5] = tensor[3];
}
}
/* ---------------------------------------------------------------------- */
void FixNHCuda::couple_ke()
{
double *tensor = temperature->vector;
if (pstyle == ISO)
mvv_current[0] = mvv_current[1] = mvv_current[2] =
tdof * boltz * t_current/dimension;
else if (pcouple == XYZ) {
double ave = 1.0/3.0 * (tensor[0] + tensor[1] + tensor[2]);
mvv_current[0] = mvv_current[1] = mvv_current[2] = ave;
} else if (pcouple == XY) {
double ave = 0.5 * (tensor[0] + tensor[1]);
mvv_current[0] = mvv_current[1] = ave;
mvv_current[2] = tensor[2];
} else if (pcouple == YZ) {
double ave = 0.5 * (tensor[1] + tensor[2]);
mvv_current[1] = mvv_current[2] = ave;
mvv_current[0] = tensor[0];
} else if (pcouple == XZ) {
double ave = 0.5 * (tensor[0] + tensor[2]);
mvv_current[0] = mvv_current[2] = ave;
mvv_current[1] = tensor[1];
} else {
mvv_current[0] = tensor[0];
mvv_current[1] = tensor[1];
mvv_current[2] = tensor[2];
}
}
/* ----------------------------------------------------------------------
change box size
remap all atoms or fix group atoms depending on allremap flag
if rigid bodies exist, scale rigid body centers-of-mass
------------------------------------------------------------------------- */
void FixNHCuda::remap()
{
int i;
double oldlo,oldhi,ctr;
double **x = atom->x;
int *mask = atom->mask;
int nlocal = atom->nlocal;
double *h = domain->h;
// omega is not used, except for book-keeping
for (int i = 0; i < 6; i++) omega[i] += dto*omega_dot[i];
// convert pertinent atoms and rigid bodies to lamda coords
if (allremap) domain->x2lamda(nlocal);
else {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
domain->x2lamda(x[i],x[i]);
}
if (nrigid)
for (i = 0; i < nrigid; i++)
modify->fix[rfix[i]]->deform(0);
// reset global and local box to new size/shape
// This operation corresponds to applying the
// translate and scale operations
// corresponding to the solution of the following ODE:
//
// h_dot = omega_dot * h
//
// where h_dot, omega_dot and h are all upper-triangular
// 3x3 tensors. In Voigt notation, the elements of the
// RHS product tensor are:
// h_dot = [0*0, 1*1, 2*2, 1*3+3*2, 0*4+5*3+4*2, 0*5+5*1]
//
// Ordering of operations preserves time symmetry.
double dto2 = dto/2.0;
double dto4 = dto/4.0;
double dto8 = dto/8.0;
if (pstyle == TRICLINIC) {
h[4] *= exp(dto8*omega_dot[0]);
h[4] += dto4*(omega_dot[5]*h[3]+omega_dot[4]*h[2]);
h[4] *= exp(dto8*omega_dot[0]);
h[3] *= exp(dto4*omega_dot[1]);
h[3] += dto2*(omega_dot[3]*h[2]);
h[3] *= exp(dto4*omega_dot[1]);
h[5] *= exp(dto4*omega_dot[0]);
h[5] += dto2*(omega_dot[5]*h[1]);
h[5] *= exp(dto4*omega_dot[0]);
h[4] *= exp(dto8*omega_dot[0]);
h[4] += dto4*(omega_dot[5]*h[3]+omega_dot[4]*h[2]);
h[4] *= exp(dto8*omega_dot[0]);
}
for (i = 0; i < 3; i++) {
if (p_flag[i]) {
oldlo = domain->boxlo[i];
oldhi = domain->boxhi[i];
ctr = 0.5 * (oldlo + oldhi);
domain->boxlo[i] = (oldlo-ctr)*exp(dto*omega_dot[i]) + ctr;
domain->boxhi[i] = (oldhi-ctr)*exp(dto*omega_dot[i]) + ctr;
}
}
if (pstyle == TRICLINIC) {
h[4] *= exp(dto8*omega_dot[0]);
h[4] += dto4*(omega_dot[5]*h[3]+omega_dot[4]*h[2]);
h[4] *= exp(dto8*omega_dot[0]);
h[3] *= exp(dto4*omega_dot[1]);
h[3] += dto2*(omega_dot[3]*h[2]);
h[3] *= exp(dto4*omega_dot[1]);
h[5] *= exp(dto4*omega_dot[0]);
h[5] += dto2*(omega_dot[5]*h[1]);
h[5] *= exp(dto4*omega_dot[0]);
h[4] *= exp(dto8*omega_dot[0]);
h[4] += dto4*(omega_dot[5]*h[3]+omega_dot[4]*h[2]);
h[4] *= exp(dto8*omega_dot[0]);
domain->yz = h[3];
domain->xz = h[4];
domain->xy = h[5];
if (domain->yz < -0.5*domain->yprd || domain->yz > 0.5*domain->yprd ||
domain->xz < -0.5*domain->xprd || domain->xz > 0.5*domain->xprd ||
domain->xy < -0.5*domain->xprd || domain->xy > 0.5*domain->xprd)
error->all("Fix npt/nph has tilted box too far - "
"box flips are not yet implemented");
}
domain->set_global_box();
domain->set_local_box();
// convert pertinent atoms and rigid bodies back to box coords
if (allremap) domain->lamda2x(nlocal);
else {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
domain->lamda2x(x[i],x[i]);
}
if (nrigid)
for (i = 0; i < nrigid; i++)
modify->fix[rfix[i]]->deform(1);
}
/* ----------------------------------------------------------------------
pack entire state of Fix into one write
------------------------------------------------------------------------- */
void FixNHCuda::write_restart(FILE *fp)
{
int nsize = 2;
if (tstat_flag) nsize += 1 + 2*mtchain;
if (pstat_flag) {
nsize += 16 + 2*mpchain;
if (deviatoric_flag) nsize += 6;
}
double* list = (double *) memory->smalloc(nsize*sizeof(double),"nh:list");
int n = 0;
list[n++] = tstat_flag;
if (tstat_flag) {
list[n++] = mtchain;
for (int ich = 0; ich < mtchain; ich++)
list[n++] = eta[ich];
for (int ich = 0; ich < mtchain; ich++)
list[n++] = eta_dot[ich];
}
list[n++] = pstat_flag;
if (pstat_flag) {
list[n++] = omega[0];
list[n++] = omega[1];
list[n++] = omega[2];
list[n++] = omega[3];
list[n++] = omega[4];
list[n++] = omega[5];
list[n++] = omega_dot[0];
list[n++] = omega_dot[1];
list[n++] = omega_dot[2];
list[n++] = omega_dot[3];
list[n++] = omega_dot[4];
list[n++] = omega_dot[5];
list[n++] = vol0;
list[n++] = t0;
list[n++] = mpchain;
if (mpchain) {
for (int ich = 0; ich < mpchain; ich++)
list[n++] = etap[ich];
for (int ich = 0; ich < mpchain; ich++)
list[n++] = etap_dot[ich];
}
list[n++] = deviatoric_flag;
if (deviatoric_flag) {
list[n++] = h0_inv[0];
list[n++] = h0_inv[1];
list[n++] = h0_inv[2];
list[n++] = h0_inv[3];
list[n++] = h0_inv[4];
list[n++] = h0_inv[5];
}
}
if (comm->me == 0) {
int size = nsize * sizeof(double);
fwrite(&size,sizeof(int),1,fp);
fwrite(list,sizeof(double),nsize,fp);
}
memory->sfree(list);
}
/* ----------------------------------------------------------------------
use state info from restart file to restart the Fix
------------------------------------------------------------------------- */
void FixNHCuda::restart(char *buf)
{
int n = 0;
double *list = (double *) buf;
int flag = static_cast<int> (list[n++]);
if (flag) {
int m = static_cast<int> (list[n++]);
if (tstat_flag && m == mtchain) {
for (int ich = 0; ich < mtchain; ich++)
eta[ich] = list[n++];
for (int ich = 0; ich < mtchain; ich++)
eta_dot[ich] = list[n++];
} else n += 2*m;
}
flag = static_cast<int> (list[n++]);
if (flag) {
omega[0] = list[n++];
omega[1] = list[n++];
omega[2] = list[n++];
omega[3] = list[n++];
omega[4] = list[n++];
omega[5] = list[n++];
omega_dot[0] = list[n++];
omega_dot[1] = list[n++];
omega_dot[2] = list[n++];
omega_dot[3] = list[n++];
omega_dot[4] = list[n++];
omega_dot[5] = list[n++];
vol0 = list[n++];
t0 = list[n++];
int m = static_cast<int> (list[n++]);
if (pstat_flag && m == mpchain) {
for (int ich = 0; ich < mpchain; ich++)
etap[ich] = list[n++];
for (int ich = 0; ich < mpchain; ich++)
etap_dot[ich] = list[n++];
} else n+=2*m;
flag = static_cast<int> (list[n++]);
if (flag) {
h0_inv[0] = list[n++];
h0_inv[1] = list[n++];
h0_inv[2] = list[n++];
h0_inv[3] = list[n++];
h0_inv[4] = list[n++];
h0_inv[5] = list[n++];
}
}
}
/* ---------------------------------------------------------------------- */
int FixNHCuda::modify_param(int narg, char **arg)
{
if (strcmp(arg[0],"temp") == 0) {
if (narg < 2) error->all("Illegal fix_modify command");
if (tflag) {
modify->delete_compute(id_temp);
tflag = 0;
}
delete [] id_temp;
int n = strlen(arg[1]) + 1;
id_temp = new char[n];
strcpy(id_temp,arg[1]);
int icompute = modify->find_compute(arg[1]);
if (icompute < 0) error->all("Could not find fix_modify temperature ID");
temperature = modify->compute[icompute];
if (temperature->tempflag == 0)
error->all("Fix_modify temperature ID does not compute temperature");
if (temperature->igroup != 0 && comm->me == 0)
error->warning("Temperature for fix modify is not for group all");
// reset id_temp of pressure to new temperature ID
if (pstat_flag) {
icompute = modify->find_compute(id_press);
if (icompute < 0)
error->all("Pressure ID for fix modify does not exist");
modify->compute[icompute]->reset_extra_compute_fix(id_temp);
}
return 2;
} else if (strcmp(arg[0],"press") == 0) {
if (narg < 2) error->all("Illegal fix_modify command");
if (!pstat_flag) error->all("Illegal fix_modify command");
if (pflag) {
modify->delete_compute(id_press);
pflag = 0;
}
delete [] id_press;
int n = strlen(arg[1]) + 1;
id_press = new char[n];
strcpy(id_press,arg[1]);
int icompute = modify->find_compute(arg[1]);
if (icompute < 0) error->all("Could not find fix_modify pressure ID");
pressure = modify->compute[icompute];
if (pressure->pressflag == 0)
error->all("Fix_modify pressure ID does not compute pressure");
return 2;
}
return 0;
}
/* ---------------------------------------------------------------------- */
double FixNHCuda::compute_scalar()
{
int i;
double volume;
double energy;
double kt = boltz * t_target;
double lkt = tdof * kt;
double lkt_press = kt;
int ich;
if (dimension == 3) volume = domain->xprd * domain->yprd * domain->zprd;
else volume = domain->xprd * domain->yprd;
energy = 0.0;
// thermostat chain energy is equivalent to Eq. (2) in
// Martyna, Tuckerman, Tobias, Klein, Mol Phys, 87, 1117
// Sum(0.5*p_eta_k^2/Q_k,k=1,M) + L*k*T*eta_1 + Sum(k*T*eta_k,k=2,M),
// where L = tdof
// M = mtchain
// p_eta_k = Q_k*eta_dot[k-1]
// Q_1 = L*k*T/t_freq^2
// Q_k = k*T/t_freq^2, k > 1
if (tstat_flag) {
energy += lkt * eta[0] + 0.5*eta_mass[0]*eta_dot[0]*eta_dot[0];
for (ich = 1; ich < mtchain; ich++)
energy += kt * eta[ich] + 0.5*eta_mass[ich]*eta_dot[ich]*eta_dot[ich];
}
// barostat energy is equivalent to Eq. (8) in
// Martyna, Tuckerman, Tobias, Klein, Mol Phys, 87, 1117
// Sum(0.5*p_omega^2/W + P*V),
// where N = natoms
// p_omega = W*omega_dot
// W = N*k*T/p_freq^2
// sum is over barostatted dimensions
if (pstat_flag) {
for (i = 0; i < 3; i++)
if (p_flag[i])
energy += 0.5*omega_dot[i]*omega_dot[i]*omega_mass[i] +
p_hydro*(volume-vol0) / (pdim*nktv2p);
if (pstyle == TRICLINIC) {
for (i = 3; i < 6; i++)
if (p_flag[i])
energy += 0.5*omega_dot[i]*omega_dot[i]*omega_mass[i];
}
// extra contributions from thermostat chain for barostat
if (mpchain) {
energy += lkt_press * etap[0] + 0.5*etap_mass[0]*etap_dot[0]*etap_dot[0];
for (ich = 1; ich < mpchain; ich++)
energy += kt * etap[ich] +
0.5*etap_mass[ich]*etap_dot[ich]*etap_dot[ich];
}
// extra contribution from strain energy
if (deviatoric_flag) energy += compute_strain_energy();
}
return energy;
}
/* ----------------------------------------------------------------------
return a single element of the following vectors, in this order:
eta[tchain], eta_dot[tchain], omega[ndof], omega_dot[ndof]
etap[pchain], etap_dot[pchain], PE_eta[tchain], KE_eta_dot[tchain]
PE_omega[ndof], KE_omega_dot[ndof], PE_etap[pchain], KE_etap_dot[pchain]
PE_strain[1]
if no thermostat exists, related quantities are omitted from the list
if no barostat exists, related quantities are omitted from the list
ndof = 1,3,6 degrees of freedom for pstyle = ISO,ANISO,TRI
------------------------------------------------------------------------- */
double FixNHCuda::compute_vector(int n)
{
int ilen;
if (tstat_flag) {
ilen = mtchain;
if (n < ilen) return eta[n];
n -= ilen;
ilen = mtchain;
if (n < ilen) return eta_dot[n];
n -= ilen;
}
if (pstat_flag) {
if (pstyle == ISO) {
ilen = 1;
if (n < ilen) return omega[n];
n -= ilen;
} else if (pstyle == ANISO) {
ilen = 3;
if (n < ilen) return omega[n];
n -= ilen;
} else {
ilen = 6;
if (n < ilen) return omega[n];
n -= ilen;
}
if (pstyle == ISO) {
ilen = 1;
if (n < ilen) return omega_dot[n];
n -= ilen;
} else if (pstyle == ANISO) {
ilen = 3;
if (n < ilen) return omega_dot[n];
n -= ilen;
} else {
ilen = 6;
if (n < ilen) return omega_dot[n];
n -= ilen;
}
if (mpchain) {
ilen = mpchain;
if (n < ilen) return etap[n];
n -= ilen;
ilen = mpchain;
if (n < ilen) return etap_dot[n];
n -= ilen;
}
}
int i;
double volume;
double kt = boltz * t_target;
double lkt = tdof * kt;
double lkt_press = kt;
int ich;
if (dimension == 3) volume = domain->xprd * domain->yprd * domain->zprd;
else volume = domain->xprd * domain->yprd;
if (tstat_flag) {
ilen = mtchain;
if (n < ilen) {
ich = n;
if (ich == 0)
return lkt * eta[0];
else
return kt * eta[ich];
}
n -= ilen;
ilen = mtchain;
if (n < ilen) {
ich = n;
if (ich == 0)
return 0.5*eta_mass[0]*eta_dot[0]*eta_dot[0];
else
return 0.5*eta_mass[ich]*eta_dot[ich]*eta_dot[ich];
}
n -= ilen;
}
if (pstat_flag) {
if (pstyle == ISO) {
ilen = 1;
if (n < ilen)
return p_hydro*(volume-vol0) / nktv2p;
n -= ilen;
} else if (pstyle == ANISO) {
ilen = 3;
if (n < ilen)
if (p_flag[n])
return p_hydro*(volume-vol0) / (pdim*nktv2p);
else
return 0.0;
n -= ilen;
} else {
ilen = 6;
if (n < ilen)
if (n > 2) return 0.0;
else if (p_flag[n])
return p_hydro*(volume-vol0) / (pdim*nktv2p);
else
return 0.0;
n -= ilen;
}
if (pstyle == ISO) {
ilen = 1;
if (n < ilen)
return pdim*0.5*omega_dot[n]*omega_dot[n]*omega_mass[n];
n -= ilen;
} else if (pstyle == ANISO) {
ilen = 3;
if (n < ilen)
if (p_flag[n])
return 0.5*omega_dot[n]*omega_dot[n]*omega_mass[n];
else return 0.0;
n -= ilen;
} else {
ilen = 6;
if (n < ilen)
if (p_flag[n])
return 0.5*omega_dot[n]*omega_dot[n]*omega_mass[n];
else return 0.0;
n -= ilen;
}
if (mpchain) {
ilen = mpchain;
if (n < ilen) {
ich = n;
if (ich == 0) return lkt_press * etap[0];
else return kt * etap[ich];
}
n -= ilen;
ilen = mpchain;
if (n < ilen) {
ich = n;
if (ich == 0)
return 0.5*etap_mass[0]*etap_dot[0]*etap_dot[0];
else
return 0.5*etap_mass[ich]*etap_dot[ich]*etap_dot[ich];
}
n -= ilen;
}
if (deviatoric_flag) {
ilen = 1;
if (n < ilen)
return compute_strain_energy();
n -= ilen;
}
}
return 0.0;
}
/* ---------------------------------------------------------------------- */
void FixNHCuda::reset_dt()
{
dtv = update->dt;
dtf = 0.5 * update->dt * force->ftm2v;
dthalf = 0.5 * update->dt;
dt4 = 0.25 * update->dt;
dt8 = 0.125 * update->dt;
dto = dthalf;
// If using respa, then remap is performed in innermost level
if (strcmp(update->integrate_style,"respa") == 0)
dto = 0.5*step_respa[0];
p_freq_max = 0.0;
if (pstat_flag) {
p_freq_max = MAX(p_freq[0],p_freq[1]);
p_freq_max = MAX(p_freq_max,p_freq[2]);
if (pstyle == TRICLINIC) {
p_freq_max = MAX(p_freq_max,p_freq[3]);
p_freq_max = MAX(p_freq_max,p_freq[4]);
p_freq_max = MAX(p_freq_max,p_freq[5]);
}
pdrag_factor = 1.0 - (update->dt * p_freq_max * drag / nc_pchain);
}
if (tstat_flag)
tdrag_factor = 1.0 - (update->dt * t_freq * drag / nc_tchain);
}
/* ----------------------------------------------------------------------
perform half-step update of chain thermostat variables
------------------------------------------------------------------------- */
void FixNHCuda::nhc_temp_integrate()
{
int ich;
double expfac;
double lkt = tdof * boltz * t_target;
double kecurrent = tdof * boltz * t_current;
eta_dotdot[0] = (kecurrent - lkt)/eta_mass[0];
double ncfac = 1.0/nc_tchain;
for (int iloop = 0; iloop < nc_tchain; iloop++) {
for (ich = mtchain-1; ich > 0; ich--) {
expfac = exp(-ncfac*dt8*eta_dot[ich+1]);
eta_dot[ich] *= expfac;
eta_dot[ich] += eta_dotdot[ich] * ncfac*dt4;
eta_dot[ich] *= tdrag_factor;
eta_dot[ich] *= expfac;
}
expfac = exp(-ncfac*dt8*eta_dot[1]);
eta_dot[0] *= expfac;
eta_dot[0] += eta_dotdot[0] * ncfac*dt4;
eta_dot[0] *= tdrag_factor;
eta_dot[0] *= expfac;
factor_eta = exp(-ncfac*dthalf*eta_dot[0]);
if(which==NOBIAS)
Cuda_FixNHCuda_nh_v_temp(&cuda->shared_data,groupbit,factor_eta,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal);
else if(which==BIAS)
{
if(!temperature->cudable)
{
cuda->downloadAll();
nh_v_temp();
cuda->cu_v->upload();
}
else
{
int groupbit_org=temperature->groupbit;
temperature->groupbit=groupbit;
temperature->remove_bias_all();
Cuda_FixNHCuda_nh_v_temp(&cuda->shared_data,groupbit,factor_eta,(igroup == atom->firstgroup)?atom->nfirst:atom->nlocal);
temperature->restore_bias_all();
temperature->groupbit=groupbit_org;
}
}
// rescale temperature due to velocity scaling
// should not be necessary to explicitly recompute the temperature
t_current *= factor_eta*factor_eta;
kecurrent = tdof * boltz * t_current;
eta_dotdot[0] = (kecurrent - lkt)/eta_mass[0];
for (ich = 0; ich < mtchain; ich++)
eta[ich] += ncfac*dthalf*eta_dot[ich];
eta_dot[0] *= expfac;
eta_dot[0] += eta_dotdot[0] * ncfac*dt4;
eta_dot[0] *= expfac;
for (ich = 1; ich < mtchain; ich++) {
expfac = exp(-ncfac*dt8*eta_dot[ich+1]);
eta_dot[ich] *= expfac;
eta_dotdot[ich] = (eta_mass[ich-1]*eta_dot[ich-1]*eta_dot[ich-1]
- boltz * t_target)/eta_mass[ich];
eta_dot[ich] += eta_dotdot[ich] * ncfac*dt4;
eta_dot[ich] *= expfac;
}
}
}
/* ----------------------------------------------------------------------
perform half-step update of chain thermostat variables for barostat
scale barostat velocities
------------------------------------------------------------------------- */
void FixNHCuda::nhc_press_integrate()
{
int ich,i;
double expfac,factor_etap,wmass,kecurrent;
double kt = boltz * t_target;
double lkt_press = kt;
kecurrent = 0.0;
for (i = 0; i < 3; i++)
if (p_flag[i]) kecurrent += omega_mass[i]*omega_dot[i]*omega_dot[i];
if (pstyle == TRICLINIC) {
for (i = 3; i < 6; i++)
if (p_flag[i]) kecurrent += omega_mass[i]*omega_dot[i]*omega_dot[i];
}
etap_dotdot[0] = (kecurrent - lkt_press)/etap_mass[0];
double ncfac = 1.0/nc_pchain;
for (int iloop = 0; iloop < nc_pchain; iloop++) {
for (ich = mpchain-1; ich > 0; ich--) {
expfac = exp(-ncfac*dt8*etap_dot[ich+1]);
etap_dot[ich] *= expfac;
etap_dot[ich] += etap_dotdot[ich] * ncfac*dt4;
etap_dot[ich] *= pdrag_factor;
etap_dot[ich] *= expfac;
}
expfac = exp(-ncfac*dt8*etap_dot[1]);
etap_dot[0] *= expfac;
etap_dot[0] += etap_dotdot[0] * ncfac*dt4;
etap_dot[0] *= pdrag_factor;
etap_dot[0] *= expfac;
for (ich = 0; ich < mpchain; ich++)
etap[ich] += ncfac*dthalf*etap_dot[ich];
factor_etap = exp(-ncfac*dthalf*etap_dot[0]);
for (i = 0; i < 3; i++)
if (p_flag[i]) omega_dot[i] *= factor_etap;
if (pstyle == TRICLINIC) {
for (i = 3; i < 6; i++)
if (p_flag[i]) omega_dot[i] *= factor_etap;
}
kecurrent = 0.0;
for (i = 0; i < 3; i++)
if (p_flag[i]) kecurrent += omega_mass[i]*omega_dot[i]*omega_dot[i];
if (pstyle == TRICLINIC) {
for (i = 3; i < 6; i++)
if (p_flag[i]) kecurrent += omega_mass[i]*omega_dot[i]*omega_dot[i];
}
etap_dotdot[0] = (kecurrent - lkt_press)/etap_mass[0];
etap_dot[0] *= expfac;
etap_dot[0] += etap_dotdot[0] * ncfac*dt4;
etap_dot[0] *= expfac;
for (ich = 1; ich < mpchain; ich++) {
expfac = exp(-ncfac*dt8*etap_dot[ich+1]);
etap_dot[ich] *= expfac;
etap_dotdot[ich] =
(etap_mass[ich-1]*etap_dot[ich-1]*etap_dot[ich-1] - boltz*t_target) /
etap_mass[ich];
etap_dot[ich] += etap_dotdot[ich] * ncfac*dt4;
etap_dot[ich] *= expfac;
}
}
}
/* ----------------------------------------------------------------------
perform half-step barostat scaling of velocities
-----------------------------------------------------------------------*/
void FixNHCuda::nh_v_press()
{
double factor[3];
double **v = atom->v;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
factor[0] = exp(-dt4*(omega_dot[0]+mtk_term2));
factor[1] = exp(-dt4*(omega_dot[1]+mtk_term2));
factor[2] = exp(-dt4*(omega_dot[2]+mtk_term2));
if (which == NOBIAS) {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
v[i][0] *= factor[0];
v[i][1] *= factor[1];
v[i][2] *= factor[2];
if (pstyle == TRICLINIC) {
v[i][0] += -dthalf*(v[i][1]*omega_dot[5] + v[i][2]*omega_dot[4]);
v[i][1] += -dthalf*v[i][2]*omega_dot[3];
}
v[i][0] *= factor[0];
v[i][1] *= factor[1];
v[i][2] *= factor[2];
}
}
} else if (which == BIAS) {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
temperature->remove_bias(i,v[i]);
v[i][0] *= factor[0];
v[i][1] *= factor[1];
v[i][2] *= factor[2];
if (pstyle == TRICLINIC) {
v[i][0] += -dthalf*(v[i][1]*omega_dot[5] + v[i][2]*omega_dot[4]);
v[i][1] += -dthalf*v[i][2]*omega_dot[3];
}
v[i][0] *= factor[0];
v[i][1] *= factor[1];
v[i][2] *= factor[2];
temperature->restore_bias(i,v[i]);
}
}
}
}
/* ----------------------------------------------------------------------
perform half-step update of velocities
-----------------------------------------------------------------------*/
void FixNHCuda::nve_v()
{
double dtfm;
double **v = atom->v;
double **f = atom->f;
double *rmass = atom->rmass;
double *mass = atom->mass;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
if (rmass) {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
dtfm = dtf / rmass[i];
v[i][0] += dtfm*f[i][0];
v[i][1] += dtfm*f[i][1];
v[i][2] += dtfm*f[i][2];
}
}
} else {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
dtfm = dtf / mass[type[i]];
v[i][0] += dtfm*f[i][0];
v[i][1] += dtfm*f[i][1];
v[i][2] += dtfm*f[i][2];
}
}
}
}
/* ----------------------------------------------------------------------
perform full-step update of positions
-----------------------------------------------------------------------*/
void FixNHCuda::nve_x()
{
double **x = atom->x;
double **v = atom->v;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
// x update by full step only for atoms in group
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
x[i][0] += dtv * v[i][0];
x[i][1] += dtv * v[i][1];
x[i][2] += dtv * v[i][2];
}
}
}
/* ----------------------------------------------------------------------
perform half-step thermostat scaling of velocities
-----------------------------------------------------------------------*/
void FixNHCuda::nh_v_temp()
{
double **v = atom->v;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (igroup == atom->firstgroup) nlocal = atom->nfirst;
if (which == NOBIAS) {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
v[i][0] *= factor_eta;
v[i][1] *= factor_eta;
v[i][2] *= factor_eta;
}
}
} else if (which == BIAS) {
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
temperature->remove_bias(i,v[i]);
v[i][0] *= factor_eta;
v[i][1] *= factor_eta;
v[i][2] *= factor_eta;
temperature->restore_bias(i,v[i]);
}
}
}
}
/* ----------------------------------------------------------------------
compute sigma tensor
needed whenever p_target or h0_inv changes
-----------------------------------------------------------------------*/
void FixNHCuda::compute_sigma()
{
// if nreset_h0 > 0, reset vol0 and h0_inv
// every nreset_h0 timesteps
if (nreset_h0 > 0) {
int delta = update->ntimestep - update->beginstep;
if (delta % nreset_h0 == 0) {
if (dimension == 3) vol0 = domain->xprd * domain->yprd * domain->zprd;
else vol0 = domain->xprd * domain->yprd;
h0_inv[0] = domain->h_inv[0];
h0_inv[1] = domain->h_inv[1];
h0_inv[2] = domain->h_inv[2];
h0_inv[3] = domain->h_inv[3];
h0_inv[4] = domain->h_inv[4];
h0_inv[5] = domain->h_inv[5];
}
}
// generate upper-triangular half of
// sigma = vol0*h0inv*(p_target-p_hydro)*h0inv^t
// units of sigma are are PV/L^2 e.g. atm.A
//
// [ 0 5 4 ] [ 0 5 4 ] [ 0 5 4 ] [ 0 - - ]
// [ 5 1 3 ] = [ - 1 3 ] [ 5 1 3 ] [ 5 1 - ]
// [ 4 3 2 ] [ - - 2 ] [ 4 3 2 ] [ 4 3 2 ]
sigma[0] =
vol0*(h0_inv[0]*((p_target[0]-p_hydro)*h0_inv[0] +
p_target[5]*h0_inv[5]+p_target[4]*h0_inv[4]) +
h0_inv[5]*(p_target[5]*h0_inv[0] +
(p_target[1]-p_hydro)*h0_inv[5]+p_target[3]*h0_inv[4]) +
h0_inv[4]*(p_target[4]*h0_inv[0]+p_target[3]*h0_inv[5] +
(p_target[2]-p_hydro)*h0_inv[4]));
sigma[1] =
vol0*(h0_inv[1]*((p_target[1]-p_hydro)*h0_inv[1] +
p_target[3]*h0_inv[3]) +
h0_inv[3]*(p_target[3]*h0_inv[1] +
(p_target[2]-p_hydro)*h0_inv[3]));
sigma[2] =
vol0*(h0_inv[2]*((p_target[2]-p_hydro)*h0_inv[2]));
sigma[3] =
vol0*(h0_inv[1]*(p_target[3]*h0_inv[2]) +
h0_inv[3]*((p_target[2]-p_hydro)*h0_inv[2]));
sigma[4] =
vol0*(h0_inv[0]*(p_target[4]*h0_inv[2]) +
h0_inv[5]*(p_target[3]*h0_inv[2]) +
h0_inv[4]*((p_target[2]-p_hydro)*h0_inv[2]));
sigma[5] =
vol0*(h0_inv[0]*(p_target[5]*h0_inv[1]+p_target[4]*h0_inv[3]) +
h0_inv[5]*((p_target[1]-p_hydro)*h0_inv[1]+p_target[3]*h0_inv[3]) +
h0_inv[4]*(p_target[3]*h0_inv[1]+(p_target[2]-p_hydro)*h0_inv[3]));
}
/* ----------------------------------------------------------------------
compute strain energy
-----------------------------------------------------------------------*/
double FixNHCuda::compute_strain_energy()
{
// compute strain energy = 0.5*Tr(sigma*h*h^t) in energy units
double* h = domain->h;
double d0,d1,d2;
d0 =
sigma[0]*(h[0]*h[0]+h[5]*h[5]+h[4]*h[4]) +
sigma[5]*( h[1]*h[5]+h[3]*h[4]) +
sigma[4]*( h[2]*h[4]);
d1 =
sigma[5]*( h[5]*h[1]+h[4]*h[3]) +
sigma[1]*( h[1]*h[1]+h[3]*h[3]) +
sigma[3]*( h[2]*h[3]);
d2 =
sigma[4]*( h[4]*h[2]) +
sigma[3]*( h[3]*h[2]) +
sigma[2]*( h[2]*h[2]);
double energy = 0.5*(d0+d1+d2)/nktv2p;
return energy;
}
/* ----------------------------------------------------------------------
compute deviatoric barostat force = h*sigma*h^t
-----------------------------------------------------------------------*/
void FixNHCuda::compute_deviatoric()
{
// generate upper-triangular part of h*sigma*h^t
// units of fdev are are PV, e.g. atm*A^3
// [ 0 5 4 ] [ 0 5 4 ] [ 0 5 4 ] [ 0 - - ]
// [ 5 1 3 ] = [ - 1 3 ] [ 5 1 3 ] [ 5 1 - ]
// [ 4 3 2 ] [ - - 2 ] [ 4 3 2 ] [ 4 3 2 ]
double* h = domain->h;
fdev[0] =
h[0]*(sigma[0]*h[0]+sigma[5]*h[5]+sigma[4]*h[4]) +
h[5]*(sigma[5]*h[0]+sigma[1]*h[5]+sigma[3]*h[4]) +
h[4]*(sigma[4]*h[0]+sigma[3]*h[5]+sigma[2]*h[4]);
fdev[1] =
h[1]*( sigma[1]*h[1]+sigma[3]*h[3]) +
h[3]*( sigma[3]*h[1]+sigma[2]*h[3]);
fdev[2] =
h[2]*( sigma[2]*h[2]);
fdev[3] =
h[1]*( sigma[3]*h[2]) +
h[3]*( sigma[2]*h[2]);
fdev[4] =
h[0]*( sigma[4]*h[2]) +
h[5]*( sigma[3]*h[2]) +
h[4]*( sigma[2]*h[2]);
fdev[5] =
h[0]*( sigma[5]*h[1]+sigma[4]*h[3]) +
h[5]*( sigma[1]*h[1]+sigma[3]*h[3]) +
h[4]*( sigma[3]*h[1]+sigma[2]*h[3]);
}
/* ----------------------------------------------------------------------
compute hydrostatic target pressure
-----------------------------------------------------------------------*/
void FixNHCuda::compute_press_target()
{
double delta = update->ntimestep - update->beginstep;
if (update->endstep > update->beginstep)
delta /= update->endstep - update->beginstep;
else delta = 0.0;
p_hydro = 0.0;
for (int i = 0; i < 3; i++)
if (p_flag[i]) {
p_target[i] = p_start[i] + delta * (p_stop[i]-p_start[i]);
p_hydro += p_target[i];
}
p_hydro /= pdim;
if (pstyle == TRICLINIC)
for (int i = 3; i < 6; i++)
p_target[i] = p_start[i] + delta * (p_stop[i]-p_start[i]);
// if deviatoric, recompute sigma each time p_target changes
if (deviatoric_flag) compute_sigma();
}
/* ----------------------------------------------------------------------
update omega_dot, omega, dilation
-----------------------------------------------------------------------*/
void FixNHCuda::nh_omega_dot()
{
double f_omega,volume;
if (dimension == 3) volume = domain->xprd*domain->yprd*domain->zprd;
else volume = domain->xprd*domain->yprd;
if (deviatoric_flag) compute_deviatoric();
mtk_term1 = 0.0;
if (mtk_flag)
if (pstyle == ISO) {
mtk_term1 = tdof * boltz * t_current;
mtk_term1 /= pdim * atom->natoms;
} else {
double *mvv_current = temperature->vector;
for (int i = 0; i < 3; i++)
if (p_flag[i])
mtk_term1 += mvv_current[i];
mtk_term1 /= pdim * atom->natoms;
}
for (int i = 0; i < 3; i++)
if (p_flag[i]) {
f_omega = (p_current[i]-p_hydro)*volume /
(omega_mass[i] * nktv2p) + mtk_term1 / omega_mass[i];
if (deviatoric_flag) f_omega -= fdev[i]/(omega_mass[i] * nktv2p);
omega_dot[i] += f_omega*dthalf;
omega_dot[i] *= pdrag_factor;
}
mtk_term2 = 0.0;
if (mtk_flag) {
for (int i = 0; i < 3; i++)
if (p_flag[i])
mtk_term2 += omega_dot[i];
mtk_term2 /= pdim * atom->natoms;
}
if (pstyle == TRICLINIC) {
for (int i = 3; i < 6; i++) {
if (p_flag[i]) {
f_omega = p_current[i]*volume/(omega_mass[i] * nktv2p);
if (deviatoric_flag)
f_omega -= fdev[i]/(omega_mass[i] * nktv2p);
omega_dot[i] += f_omega*dthalf;
omega_dot[i] *= pdrag_factor;
}
}
}
}
Event Timeline
Log In to Comment