Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F119659838
finish.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jun 28, 08:32
Size
13 KB
Mime Type
text/x-c
Expires
Mon, Jun 30, 08:32 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
26990953
Attached To
rLAMMPS lammps
finish.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "mpi.h"
#include "math.h"
#include "string.h"
#include "stdio.h"
#include "finish.h"
#include "timer.h"
#include "atom.h"
#include "force.h"
#include "kspace.h"
#include "update.h"
#include "min.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "neigh_request.h"
#include "output.h"
#include "memory.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
Finish::Finish(LAMMPS *lmp) : Pointers(lmp) {}
/* ---------------------------------------------------------------------- */
void Finish::end(int flag)
{
int i,m;
int histo[10];
double time,tmp,ave,max,min;
int me,nprocs;
MPI_Comm_rank(world,&me);
MPI_Comm_size(world,&nprocs);
// deduce time_other
double time_other = timer->array[TIME_LOOP] -
(timer->array[TIME_PAIR] + timer->array[TIME_BOND] +
timer->array[TIME_KSPACE] + timer->array[TIME_NEIGHBOR] +
timer->array[TIME_COMM] + timer->array[TIME_OUTPUT]);
double time_loop = timer->array[TIME_LOOP];
MPI_Allreduce(&time_loop,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time_loop = tmp/nprocs;
// overall loop time
// use actual natoms, in case atoms were lost
double natoms;
double rlocal = atom->nlocal;
MPI_Allreduce(&rlocal,&natoms,1,MPI_DOUBLE,MPI_SUM,world);
if (me == 0) {
if (screen)
fprintf(screen,
"Loop time of %g on %d procs for %d steps with %.15g atoms\n",
time_loop,nprocs,update->nsteps,natoms);
if (logfile)
fprintf(logfile,
"Loop time of %g on %d procs for %d steps with %.15g atoms\n",
time_loop,nprocs,update->nsteps,natoms);
}
if (flag == 0) return;
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
// minimization stats
if (update->whichflag == 1) {
if (me == 0) {
if (screen) {
fprintf(screen,"Minimization stats:\n");
fprintf(screen," Stopping criterion = %s\n",
update->minimize->stopstr);
fprintf(screen," Energy initial, next-to-last, final = \n"
" %18.12g %18.12g %18.12g\n",
update->minimize->einitial,update->minimize->eprevious,
update->minimize->efinal);
fprintf(screen," Force two-norm initial, final = %g %g\n",
update->minimize->fnorm2_init,update->minimize->fnorm2_final);
fprintf(screen," Force max component initial, final = %g %g\n",
update->minimize->fnorminf_init,
update->minimize->fnorminf_final);
fprintf(screen," Final line search alpha, max atom move = %g %g\n",
update->minimize->alpha_final,
update->minimize->alpha_final*
update->minimize->fnorminf_final);
fprintf(screen," Iterations, force evaluations = %d %d\n",
update->minimize->niter,update->minimize->neval);
}
if (logfile) {
fprintf(logfile,"Minimization stats:\n");
fprintf(logfile," Stopping criterion = %s\n",
update->minimize->stopstr);
fprintf(logfile," Energy initial, next-to-last, final = \n"
" %18.12g %18.12g %18.12g\n",
update->minimize->einitial,update->minimize->eprevious,
update->minimize->efinal);
fprintf(logfile," Force two-norm initial, final = %g %g\n",
update->minimize->fnorm2_init,update->minimize->fnorm2_final);
fprintf(logfile," Force max component initial, final = %g %g\n",
update->minimize->fnorminf_init,
update->minimize->fnorminf_final);
fprintf(logfile," Final line search alpha, max atom move = %g %g\n",
update->minimize->alpha_final,
update->minimize->alpha_final*
update->minimize->fnorminf_final);
fprintf(logfile," Iterations, force evaluations = %d %d\n",
update->minimize->niter,update->minimize->neval);
}
}
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
}
// timing breakdowns
if (time_loop == 0.0) time_loop = 1.0;
time = timer->array[TIME_PAIR];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Pair time (%%) = %g (%g)\n",time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Pair time (%%) = %g (%g)\n",time,time/time_loop*100.0);
}
if (atom->molecular) {
time = timer->array[TIME_BOND];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Bond time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Bond time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
}
if (force->kspace) {
time = timer->array[TIME_KSPACE];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Kspce time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Kspce time (%%) = %g (%g)\n",
time,time/time_loop*100.0);
}
}
time = timer->array[TIME_NEIGHBOR];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Neigh time (%%) = %g (%g)\n",time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Neigh time (%%) = %g (%g)\n",time,time/time_loop*100.0);
}
time = timer->array[TIME_COMM];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Comm time (%%) = %g (%g)\n",time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Comm time (%%) = %g (%g)\n",time,time/time_loop*100.0);
}
time = timer->array[TIME_OUTPUT];
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Outpt time (%%) = %g (%g)\n",time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Outpt time (%%) = %g (%g)\n",time,time/time_loop*100.0);
}
time = time_other;
MPI_Allreduce(&time,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time = tmp/nprocs;
if (me == 0) {
if (screen)
fprintf(screen,"Other time (%%) = %g (%g)\n",time,time/time_loop*100.0);
if (logfile)
fprintf(logfile,"Other time (%%) = %g (%g)\n",time,time/time_loop*100.0);
}
// FFT timing statistics
// time3d,time1d = total time during run for 3d and 1d FFTs
if (strstr(force->kspace_style,"pppm")) {
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
int nsteps = update->nsteps;
int nsample = 5;
double time3d,time1d;
force->kspace->timing(nsample,time3d,time1d);
time3d = nsteps * time3d / nsample;
MPI_Allreduce(&time3d,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time3d = tmp/nprocs;
time1d = nsteps * time1d / nsample;
MPI_Allreduce(&time1d,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time1d = tmp/nprocs;
double time_kspace = timer->array[TIME_KSPACE];
MPI_Allreduce(&time_kspace,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
time_kspace = tmp/nprocs;
double ntotal = 1.0 * force->kspace->nx_pppm *
force->kspace->ny_pppm * force->kspace->nz_pppm;
double nflops = 5.0 * ntotal * log(ntotal);
double fraction,flop3,flop1;
if (nsteps) {
fraction = time3d/time_kspace*100.0;
flop3 = nflops/1.0e9/(time3d/4.0/nsteps);
flop1 = nflops/1.0e9/(time1d/4.0/nsteps);
} else fraction = flop3 = flop1 = 0.0;
if (me == 0) {
if (screen) {
fprintf(screen,"FFT time (%% of Kspce) = %g (%g)\n",time3d,fraction);
fprintf(screen,"FFT Gflps 3d (1d only) = %g %g\n",flop3,flop1);
}
if (logfile) {
fprintf(logfile,"FFT time (%% of Kspce) = %g (%g)\n",time3d,fraction);
fprintf(logfile,"FFT Gflps 3d (1d only) = %g %g\n",flop3,flop1);
}
}
}
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
tmp = atom->nlocal;
stats(1,&tmp,&ave,&max,&min,10,histo);
if (me == 0) {
if (screen) {
fprintf(screen,"Nlocal: %g ave %g max %g min\n",ave,max,min);
fprintf(screen,"Histogram:");
for (i = 0; i < 10; i++) fprintf(screen," %d",histo[i]);
fprintf(screen,"\n");
}
if (logfile) {
fprintf(logfile,"Nlocal: %g ave %g max %g min\n",ave,max,min);
fprintf(logfile,"Histogram:");
for (i = 0; i < 10; i++) fprintf(logfile," %d",histo[i]);
fprintf(logfile,"\n");
}
}
tmp = atom->nghost;
stats(1,&tmp,&ave,&max,&min,10,histo);
if (me == 0) {
if (screen) {
fprintf(screen,"Nghost: %g ave %g max %g min\n",ave,max,min);
fprintf(screen,"Histogram:");
for (i = 0; i < 10; i++) fprintf(screen," %d",histo[i]);
fprintf(screen,"\n");
}
if (logfile) {
fprintf(logfile,"Nghost: %g ave %g max %g min\n",ave,max,min);
fprintf(logfile,"Histogram:");
for (i = 0; i < 10; i++) fprintf(logfile," %d",histo[i]);
fprintf(logfile,"\n");
}
}
// find a non-skip neighbor list containing half the pairwise interactions
// count neighbors in that list for stats purposes
for (m = 0; m < neighbor->old_nrequest; m++)
if ((neighbor->old_requests[m]->half || neighbor->old_requests[m]->gran ||
neighbor->old_requests[m]->respaouter ||
neighbor->old_requests[m]->half_from_full) &&
neighbor->old_requests[m]->skip == 0) break;
int nneigh = 0;
if (m < neighbor->old_nrequest) {
int inum = neighbor->lists[m]->inum;
int *ilist = neighbor->lists[m]->ilist;
int *numneigh = neighbor->lists[m]->numneigh;
for (int ii = 0; ii < inum; ii++)
nneigh += numneigh[ilist[ii]];
}
tmp = nneigh;
stats(1,&tmp,&ave,&max,&min,10,histo);
if (me == 0) {
if (screen) {
fprintf(screen,"Neighs: %g ave %g max %g min\n",ave,max,min);
fprintf(screen,"Histogram:");
for (i = 0; i < 10; i++) fprintf(screen," %d",histo[i]);
fprintf(screen,"\n");
}
if (logfile) {
fprintf(logfile,"Neighs: %g ave %g max %g min\n",ave,max,min);
fprintf(logfile,"Histogram:");
for (i = 0; i < 10; i++) fprintf(logfile," %d",histo[i]);
fprintf(logfile,"\n");
}
}
// find a non-skip neighbor list containing full pairwise interactions
for (m = 0; m < neighbor->old_nrequest; m++)
if (neighbor->old_requests[m]->full &&
neighbor->old_requests[m]->skip == 0) break;
if (m < neighbor->old_nrequest) {
nneigh = 0;
for (i = 0; i < atom->nlocal; i++)
nneigh += neighbor->lists[m]->numneigh[i];
tmp = nneigh;
stats(1,&tmp,&ave,&max,&min,10,histo);
if (me == 0) {
if (screen) {
fprintf(screen,"FullNghs: %g ave %g max %g min\n",ave,max,min);
fprintf(screen,"Histogram:");
for (i = 0; i < 10; i++) fprintf(screen," %d",histo[i]);
fprintf(screen,"\n");
}
if (logfile) {
fprintf(logfile,"FullNghs: %g ave %g max %g min\n",ave,max,min);
fprintf(logfile,"Histogram:");
for (i = 0; i < 10; i++) fprintf(logfile," %d",histo[i]);
fprintf(logfile,"\n");
}
}
}
if (me == 0) {
if (screen) fprintf(screen,"\n");
if (logfile) fprintf(logfile,"\n");
}
tmp = nneigh;
double nall;
MPI_Allreduce(&tmp,&nall,1,MPI_DOUBLE,MPI_SUM,world);
int nspec;
double nspec_all;
if (atom->molecular) {
nspec = 0;
for (i = 0; i < atom->nlocal; i++) nspec += atom->nspecial[i][2];
tmp = nspec;
MPI_Allreduce(&tmp,&nspec_all,1,MPI_DOUBLE,MPI_SUM,world);
}
if (me == 0) {
if (screen) {
if (nall < 2.0e9)
fprintf(screen,"Total # of neighbors = %d\n",static_cast<int> (nall));
else fprintf(screen,"Total # of neighbors = %g\n",nall);
if (natoms > 0) fprintf(screen,"Ave neighs/atom = %g\n",nall/natoms);
if (atom->molecular && natoms > 0)
fprintf(screen,"Ave special neighs/atom = %g\n",nspec_all/natoms);
fprintf(screen,"Neighbor list builds = %d\n",neighbor->ncalls);
fprintf(screen,"Dangerous builds = %d\n",neighbor->ndanger);
}
if (logfile) {
if (nall < 2.0e9)
fprintf(logfile,"Total # of neighbors = %d\n",static_cast<int> (nall));
else fprintf(logfile,"Total # of neighbors = %g\n",nall);
if (natoms > 0) fprintf(logfile,"Ave neighs/atom = %g\n",nall/natoms);
if (atom->molecular && natoms > 0)
fprintf(logfile,"Ave special neighs/atom = %g\n",nspec_all/natoms);
fprintf(logfile,"Neighbor list builds = %d\n",neighbor->ncalls);
fprintf(logfile,"Dangerous builds = %d\n",neighbor->ndanger);
}
}
if (logfile) fflush(logfile);
}
/* ---------------------------------------------------------------------- */
void Finish::stats(int n, double *data,
double *pave, double *pmax, double *pmin,
int nhisto, int *histo)
{
int i,m;
int *histotmp;
double min = 1.0e20;
double max = -1.0e20;
double ave = 0.0;
for (i = 0; i < n; i++) {
ave += data[i];
if (data[i] < min) min = data[i];
if (data[i] > max) max = data[i];
}
int ntotal;
MPI_Allreduce(&n,&ntotal,1,MPI_INT,MPI_SUM,world);
double tmp;
MPI_Allreduce(&ave,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
ave = tmp/ntotal;
MPI_Allreduce(&min,&tmp,1,MPI_DOUBLE,MPI_MIN,world);
min = tmp;
MPI_Allreduce(&max,&tmp,1,MPI_DOUBLE,MPI_MAX,world);
max = tmp;
for (i = 0; i < nhisto; i++) histo[i] = 0;
double del = max - min;
for (i = 0; i < n; i++) {
if (del == 0.0) m = 0;
else m = static_cast<int> ((data[i]-min)/del * nhisto);
if (m > nhisto-1) m = nhisto-1;
histo[m]++;
}
histotmp = (int *) memory->smalloc(nhisto*sizeof(int),"finish:histotmp");
MPI_Allreduce(histo,histotmp,nhisto,MPI_INT,MPI_SUM,world);
for (i = 0; i < nhisto; i++) histo[i] = histotmp[i];
memory->sfree(histotmp);
*pave = ave;
*pmax = max;
*pmin = min;
}
Event Timeline
Log In to Comment