lammps/doc/99b93436e48b86efficient_neuronet
lammps/doc/99
b93436e48b86efficient_neuronet
99
99
README.html
README.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS</H2>
<P>
LAMMPS = Large-scale Atomic/Molecular Massively Parallel Simulator</P>
<P>
This is the documentation for the LAMMPS 99 version, written in F77,
which has been superceded by more current versions. See the <A
HREF="http://www.cs.sandia.gov/~sjplimp/lammps.html">LAMMPS WWW
Site</A> for more information.
<P>
LAMMPS is a classical molecular dynamics code designed for simulating
molecular and atomic systems on parallel computers using
spatial-decomposition techniques. It runs on any parallel platform that
supports the MPI message-passing library or on single-processor
workstations.</P>
<P>
LAMMPS 99 is copyrighted code that is distributed freely as
open-source software under the GNU Public License (GPL). See the
LICENSE file or <A HREF="http://www.gnu.org">www.gnu.org</A> for more
details. Basically the GPL allows you as a user to use, modify, or
distribute LAMMPS however you wish, so long as any software you
distribute remains under the GPL.
<P>
Features of LAMMPS 99 include:</P>
<UL>
<LI>
short-range pairwise Lennard-Jones and Coulombic interactions
<LI>
long-range Coulombic interactions via Ewald or PPPM (particle-mesh
Ewald)
<LI>
short-range harmonic bond potentials (bond, angle, torsion, improper)
<LI>
short-range class II (cross-term) molecular potentials
<LI>
NVE, NVT, NPT dynamics
<LI>
constraints on atoms or groups of atoms
<LI>
rRESPA long-timescale integrator
<LI>
energy minimizer (Hessian-free truncated Newton method)
</UL>
<P>
More details about the code can be found <A HREF="#_cch3_930958294">here</A>,
in the HTML-based documentation. There is also a conference paper
describing the parallel algorithms used in the code:</P>
<P>
S. J. Plimpton, R. Pollock, M. Stevens, "Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations", in Proc of
the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.</P>
<P>
LAMMPS was originally developed as part of a 5-way CRADA collaboration
between 3 industrial partners (Cray Research, Bristol-Myers Squibb, and
Dupont) and 2 DoE laboratories (Sandia National Laboratories and
Lawrence Livermore National Laboratories).</P>
<P>
The primary author of LAMMPS is Steve Plimpton, but others have written
or worked on significant portions of the code:</P>
<UL>
<LI>
Roy Pollock (LLNL): Ewald, PPPM solvers
<LI>
Mark Stevens (Sandia): rRESPA, NPT integrators
<LI>
Eric Simon (Cray Research): class II force fields
<LI>
Todd Plantenga (Sandia): energy minimizer
<LI>
Steve Lustig (Dupont): msi2lmp tool
<LI>
Mike Peachey (Cray Research): msi2lmp tool
</UL>
<P>
Other CRADA partners involved in the design and testing of LAMMPS are </P>
<UL>
<LI>
John Carpenter (Cray Research)
<LI>
Terry Stouch (Bristol-Myers Squibb)
<LI>
Jim Belak (LLNL)
</UL>
<P>
LAMMPS is copyrighted code that is distributed freely as open-source
software under the GNU Public License (GPL). See the LICENSE file or
<A HREF="http://www.gnu.org">www.gnu.org</A> for more details.
Basically the GPL allows you as a user to use, modify, or distribute
LAMMPS however you wish, so long as any software you distribute
remains under the GPL.
<P>
If you have questions about LAMMPS, please contact me:
</P>
<DL>
<DT>
Steve Plimpton
<DD>
sjplimp@sandia.gov
<DD>
www.cs.sandia.gov/~sjplimp
<DD>
Sandia National Labs
<DD>
Albuquerque, NM 87185
</DL>
<HR>
<H3>
<A NAME="_cch3_930958294">More Information about LAMMPS</A></H3>
<DIR>
<LI>
<A HREF="basics.html">Basics</A>
<DIR>
<LI>
how to make, run, and test LAMMPS with the example problems
</DIR>
<LI>
<A HREF="input_commands.html">Input Commands</A>
<DIR>
<LI>
a complete listing of input commands used by LAMMPS
</DIR>
<LI>
<A HREF="data_format.html">Data Format</A>
<DIR>
<LI>
the data file format used by LAMMPS
</DIR>
<LI>
<A HREF="force_fields.html">Force Fields</A>
<DIR>
<LI>
the equations LAMMPS uses to compute force-fields
</DIR>
<LI>
<A HREF="units.html">Units</A>
<DIR>
<LI>
the input/output and internal units for LAMMPS variables
</DIR>
<LI>
<A HREF="crib.html">Crib</A>
<DIR>
<LI>
a one-line description of the variables used in LAMMPS
</DIR>
<LI>
<A HREF="history.html">History</A>
<DIR>
<LI>
a brief timeline of features added to LAMMPS
</DIR>
</DIR>
</BODY>
</HTML>
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS</H2>
<P>
LAMMPS = Large-scale Atomic/Molecular Massively Parallel Simulator</P>
<P>
This is the documentation for the LAMMPS 99 version, written in F77,
which has been superceded by more current versions. See the <A
HREF="http://www.cs.sandia.gov/~sjplimp/lammps.html">LAMMPS WWW
Site</A> for more information.
<P>
LAMMPS is a classical molecular dynamics code designed for simulating
molecular and atomic systems on parallel computers using
spatial-decomposition techniques. It runs on any parallel platform that
supports the MPI message-passing library or on single-processor
workstations.</P>
<P>
LAMMPS 99 is copyrighted code that is distributed freely as
open-source software under the GNU Public License (GPL). See the
LICENSE file or <A HREF="http://www.gnu.org">www.gnu.org</A> for more
details. Basically the GPL allows you as a user to use, modify, or
distribute LAMMPS however you wish, so long as any software you
distribute remains under the GPL.
<P>
Features of LAMMPS 99 include:</P>
<UL>
<LI>
short-range pairwise Lennard-Jones and Coulombic interactions
<LI>
long-range Coulombic interactions via Ewald or PPPM (particle-mesh
Ewald)
<LI>
short-range harmonic bond potentials (bond, angle, torsion, improper)
<LI>
short-range class II (cross-term) molecular potentials
<LI>
NVE, NVT, NPT dynamics
<LI>
constraints on atoms or groups of atoms
<LI>
rRESPA long-timescale integrator
<LI>
energy minimizer (Hessian-free truncated Newton method)
</UL>
<P>
More details about the code can be found <A HREF="#_cch3_930958294">here</A>,
in the HTML-based documentation. There is also a conference paper
describing the parallel algorithms used in the code:</P>
<P>
S. J. Plimpton, R. Pollock, M. Stevens, "Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations", in Proc of
the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.</P>
<P>
LAMMPS was originally developed as part of a 5-way CRADA collaboration
between 3 industrial partners (Cray Research, Bristol-Myers Squibb, and
Dupont) and 2 DoE laboratories (Sandia National Laboratories and
Lawrence Livermore National Laboratories).</P>
<P>
The primary author of LAMMPS is Steve Plimpton, but others have written
or worked on significant portions of the code:</P>
<UL>
<LI>
Roy Pollock (LLNL): Ewald, PPPM solvers
<LI>
Mark Stevens (Sandia): rRESPA, NPT integrators
<LI>
Eric Simon (Cray Research): class II force fields
<LI>
Todd Plantenga (Sandia): energy minimizer
<LI>
Steve Lustig (Dupont): msi2lmp tool
<LI>
Mike Peachey (Cray Research): msi2lmp tool
</UL>
<P>
Other CRADA partners involved in the design and testing of LAMMPS are </P>
<UL>
<LI>
John Carpenter (Cray Research)
<LI>
Terry Stouch (Bristol-Myers Squibb)
<LI>
Jim Belak (LLNL)
</UL>
<P>
LAMMPS is copyrighted code that is distributed freely as open-source
software under the GNU Public License (GPL). See the LICENSE file or
<A HREF="http://www.gnu.org">www.gnu.org</A> for more details.
Basically the GPL allows you as a user to use, modify, or distribute
LAMMPS however you wish, so long as any software you distribute
remains under the GPL.
<P>
If you have questions about LAMMPS, please contact me:
</P>
<DL>
<DT>
Steve Plimpton
<DD>
sjplimp@sandia.gov
<DD>
www.cs.sandia.gov/~sjplimp
<DD>
Sandia National Labs
<DD>
Albuquerque, NM 87185
</DL>
<HR>
<H3>
<A NAME="_cch3_930958294">More Information about LAMMPS</A></H3>
<DIR>
<LI>
<A HREF="basics.html">Basics</A>
<DIR>
<LI>
how to make, run, and test LAMMPS with the example problems
</DIR>
<LI>
<A HREF="input_commands.html">Input Commands</A>
<DIR>
<LI>
a complete listing of input commands used by LAMMPS
</DIR>
<LI>
<A HREF="data_format.html">Data Format</A>
<DIR>
<LI>
the data file format used by LAMMPS
</DIR>
<LI>
<A HREF="force_fields.html">Force Fields</A>
<DIR>
<LI>
the equations LAMMPS uses to compute force-fields
</DIR>
<LI>
<A HREF="units.html">Units</A>
<DIR>
<LI>
the input/output and internal units for LAMMPS variables
</DIR>
<LI>
<A HREF="crib.html">Crib</A>
<DIR>
<LI>
a one-line description of the variables used in LAMMPS
</DIR>
<LI>
<A HREF="history.html">History</A>
<DIR>
<LI>
a brief timeline of features added to LAMMPS
</DIR>
</DIR>
</BODY>
</HTML>
c4science · Help