Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F99140175
compute_temp.html
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Jan 21, 12:02
Size
4 KB
Mime Type
text/html
Expires
Thu, Jan 23, 12:02 (2 d)
Engine
blob
Format
Raw Data
Handle
23715191
Attached To
rLAMMPS lammps
compute_temp.html
View Options
<HTML>
<CENTER><A
HREF =
"http://lammps.sandia.gov"
>
LAMMPS WWW Site
</A>
-
<A
HREF =
"Manual.html"
>
LAMMPS Documentation
</A>
-
<A
HREF =
"Section_commands.html#comm"
>
LAMMPS Commands
</A>
</CENTER>
<HR>
<H3>
compute temp command
</H3>
<H3>
compute temp/cuda command
</H3>
<P><B>
Syntax:
</B>
</P>
<PRE>
compute ID group-ID temp
</PRE>
<UL><LI>
ID, group-ID are documented in
<A
HREF =
"compute.html"
>
compute
</A>
command
<LI>
temp = style name of this compute command
</UL>
<P><B>
Examples:
</B>
</P>
<PRE>
compute 1 all temp
compute myTemp mobile temp
</PRE>
<P><B>
Description:
</B>
</P>
<P>
Define a computation that calculates the temperature of a group of
atoms. A compute of this style can be used by any command that
computes a temperature, e.g.
<A
HREF =
"thermo_modify.html"
>
thermo_modify
</A>
,
<A
HREF =
"fix_temp_rescale.html"
>
fix
temp/rescale
</A>
,
<A
HREF =
"fix_nh.html"
>
fix npt
</A>
, etc.
</P>
<P>
The temperature is calculated by the formula KE = dim/2 N k T, where
KE = total kinetic energy of the group of atoms (sum of 1/2 m v^2),
dim = 2 or 3 = dimensionality of the simulation, N = number of atoms
in the group, k = Boltzmann constant, and T = temperature.
</P>
<P>
A kinetic energy tensor, stored as a 6-element vector, is also
calculated by this compute for use in the computation of a pressure
tensor. The formula for the components of the tensor is the same as
the above formula, except that v^2 is replaced by vx*vy for the xy
component, etc. The 6 components of the vector are ordered xx, yy,
zz, xy, xz, yz.
</P>
<P>
The number of atoms contributing to the temperature is assumed to be
constant for the duration of the run; use the
<I>
dynamic
</I>
option of the
<A
HREF =
"compute_modify.html"
>
compute_modify
</A>
command if this is not the case.
</P>
<P>
This compute subtracts out degrees-of-freedom due to fixes that
constrain molecular motion, such as
<A
HREF =
"fix_shake.html"
>
fix shake
</A>
and
<A
HREF =
"fix_rigid.html"
>
fix rigid
</A>
. This means the temperature of groups of
atoms that include these constraints will be computed correctly. If
needed, the subtracted degrees-of-freedom can be altered using the
<I>
extra
</I>
option of the
<A
HREF =
"compute_modify.html"
>
compute_modify
</A>
command.
</P>
<P>
A compute of this style with the ID of "thermo_temp" is created when
LAMMPS starts up, as if this command were in the input script:
</P>
<PRE>
compute thermo_temp all temp
</PRE>
<P>
See the "thermo_style" command for more details.
</P>
<P>
See
<A
HREF =
"Section_howto.html#howto_16"
>
this howto section
</A>
of the manual for
a discussion of different ways to compute temperature and perform
thermostatting.
</P>
<HR>
<P>
Styles with a
<I>
cuda
</I>
suffix are functionally the same as the
corresponding style without the suffix. They have been optimized to
run faster, depending on your available hardware, as discussed in
<A
HREF =
"Section_accelerate.html"
>
Section_accelerate
</A>
of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.
</P>
<P>
These accelerated styles are part of the USER-CUDA package. They are
only enabled if LAMMPS was built with that package. See the
<A
HREF =
"Section_start.html#start_3"
>
Making
LAMMPS
</A>
section for more info.
</P>
<P>
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the
<A
HREF =
"Section_start.html#start_7"
>
-suffix command-line
switch
</A>
when you invoke LAMMPS, or you can
use the
<A
HREF =
"suffix.html"
>
suffix
</A>
command in your input script.
</P>
<P>
See
<A
HREF =
"Section_accelerate.html"
>
Section_accelerate
</A>
of the manual for
more instructions on how to use the accelerated styles effectively.
</P>
<HR>
<P><B>
Output info:
</B>
</P>
<P>
This compute calculates a global scalar (the temperature) and a global
vector of length 6 (KE tensor), which can be accessed by indices 1-6.
These values can be used by any command that uses global scalar or
vector values from a compute as input. See
<A
HREF =
"Section_howto.html#howto_15"
>
this
section
</A>
for an overview of LAMMPS output
options.
</P>
<P>
The scalar value calculated by this compute is "intensive". The
vector are "extensive".
</P>
<P>
The scalar value will be in temperature
<A
HREF =
"units.html"
>
units
</A>
. The
vector values will be in energy
<A
HREF =
"units.html"
>
units
</A>
.
</P>
<P><B>
Restrictions:
</B>
none
</P>
<P><B>
Related commands:
</B>
</P>
<P><A
HREF =
"compute_temp_partial.html"
>
compute temp/partial
</A>
,
<A
HREF =
"compute_temp_region.html"
>
compute
temp/region
</A>
,
<A
HREF =
"compute_pressure.html"
>
compute
pressure
</A>
</P>
<P><B>
Default:
</B>
none
</P>
</HTML>
Event Timeline
Log In to Comment