<p>between an atom and its corresponding tether site which will typically
be a frozen atom in the simulation. Rc is the cutoff.</p>
<p>The following coefficients must be defined for each pair of atom types
via the <aclass="reference internal"href="pair_coeff.html"><spanclass="doc">pair_coeff</span></a> command as in the examples above,
or in the data file or restart files read by the
<aclass="reference internal"href="read_data.html"><spanclass="doc">read_data</span></a> or <aclass="reference internal"href="read_restart.html"><spanclass="doc">read_restart</span></a>
commands:</p>
<ulclass="simple">
<li>A (energy units)</li>
<li>B (1/distance^2 units)</li>
<li>cutoff (distance units)</li>
</ul>
<p>The last coefficient is optional. If not specified, the global cutoff
is used.</p>
<p>Style <em>gauss/cut</em> computes a generalized Gaussian interaction potential
<p>where H determines together with the standard deviation sigma_h the
peak height of the Gaussian function, and r_mh the peak position.
Examples of the use of the Gaussian potentials include implicit
solvent simulations of salt ions <aclass="reference internal"href="#lenart"><spanclass="std std-ref">(Lenart)</span></a> and of surfactants
<aclass="reference internal"href="#jusufi"><spanclass="std std-ref">(Jusufi)</span></a>. In these instances the Gaussian potential mimics
the hydration barrier between a pair of particles. The hydration
barrier is located at r_mh and has a width of sigma_h. The prefactor
determines the hight of the potential barrier.</p>
<p>The following coefficients must be defined for each pair of atom types
via the <aclass="reference internal"href="pair_coeff.html"><spanclass="doc">pair_coeff</span></a> command as in the example above,
or in the data file or restart files read by the
<aclass="reference internal"href="read_data.html"><spanclass="doc">read_data</span></a> or <aclass="reference internal"href="read_restart.html"><spanclass="doc">read_restart</span></a>
commands:</p>
<ulclass="simple">
<li>H (energy * distance units)</li>
<li>r_mh (distance units)</li>
<li>sigma_h (distance units)</li>
</ul>
<p>The global cutoff (r_c) specified in the pair_style command is used.</p>
<hrclass="docutils"/>
<p>Styles with a <em>gpu</em>, <em>intel</em>, <em>kk</em>, <em>omp</em>, or <em>opt</em> suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in <aclass="reference internal"href="Section_accelerate.html"><spanclass="doc">Section_accelerate</span></a>
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.</p>
<p>These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
USER-OMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the <spanclass="xref std std-ref">Making LAMMPS</span> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the “-suffix command-line
switch7_Section_start.html#start_6 when you invoke LAMMPS, or you can
use the <aclass="reference internal"href="suffix.html"><spanclass="doc">suffix</span></a> command in your input script.</p>
<p>See <aclass="reference internal"href="Section_accelerate.html"><spanclass="doc">Section_accelerate</span></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
<p>These pair styles do not support mixing. Thus, coefficients for all
I,J pairs must be specified explicitly.</p>
<p>The <em>gauss</em> style does not support the <aclass="reference internal"href="pair_modify.html"><spanclass="doc">pair_modify</span></a>
shift option. There is no effect due to the Gaussian well beyond the
cutoff; hence reasonable cutoffs need to be specified.</p>
<p>The <em>gauss/cut</em> style supports the <aclass="reference internal"href="pair_modify.html"><spanclass="doc">pair_modify</span></a> shift
option for the energy of the Gauss-potential portion of the pair
interaction.</p>
<p>The <aclass="reference internal"href="pair_modify.html"><spanclass="doc">pair_modify</span></a> table and tail options are not
relevant for these pair styles.</p>
<p>These pair styles write their information to <aclass="reference internal"href="restart.html"><spanclass="doc">binary restart files</span></a>, so pair_style and pair_coeff commands do not need
to be specified in an input script that reads a restart file.</p>
<p>These pair styles can only be used via the <em>pair</em> keyword of the
<aclass="reference internal"href="run_style.html"><spanclass="doc">run_style respa</span></a> command. They do not support the
<p>The <em>gauss</em> pair style tallies an “occupancy” count of how many Gaussian-well
sites have an atom within the distance at which the force is a maximum
= sqrt(0.5/b). This quantity can be accessed via the <aclass="reference internal"href="compute_pair.html"><spanclass="doc">compute pair</span></a> command as a vector of values of length 1.</p>
<p>To print this quantity to the log file (with a descriptive column
heading) the following commands could be included in an input script:</p>
Built with <ahref="http://sphinx-doc.org/">Sphinx</a> using a <ahref="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <ahref="https://readthedocs.org">Read the Docs</a>.