Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90455027
CG.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 20:39
Size
2 KB
Mime Type
text/x-c++
Expires
Sun, Nov 3, 20:39 (2 d)
Engine
blob
Format
Raw Data
Handle
21901010
Attached To
rLAMMPS lammps
CG.h
View Options
//*****************************************************************
// Iterative template routine -- CG
//
// CG solves the symmetric positive definite linear
// system Ax=b using the Conjugate Gradient method.
//
// CG follows the algorithm described on p. 15 in the
// SIAM Templates book.
//
// The return value indicates convergence within max_iter (input)
// iterations (0), or no convergence within max_iter iterations (1).
//
// Upon successful return, output arguments have the following values:
//
// x -- approximate solution to Ax = b
// max_iter -- the number of iterations performed before the
// tolerance was reached
// tol -- the residual after the final iteration
//
//*****************************************************************
/**
* @class CG
* @brief Base class for solving the linear system Ax=b using the Conjugate Gradient method
*/
template
<
class
Matrix
,
class
Vector
,
class
DataVector
,
class
Preconditioner
,
class
Real
>
int
CG
(
const
Matrix
&
A
,
Vector
&
x
,
const
DataVector
&
b
,
const
Preconditioner
&
M
,
int
&
max_iter
,
Real
&
tol
)
{
Real
resid
;
DenseVector
<
Real
>
p
,
z
,
q
;
Real
alpha
,
beta
,
rho
,
rho_1
(
0
);
DenseVector
<
Real
>
tmp
;
tmp
.
reset
(
b
.
size
());
p
.
reset
(
b
.
size
());
z
.
reset
(
b
.
size
());
q
.
reset
(
b
.
size
());
Real
normb
=
b
.
norm
();
DenseVector
<
Real
>
r
;
tmp
=
A
*
x
;
r
=
b
-
tmp
;
// Implicit assumption that only diagonal matrices are being used for preconditioning
Preconditioner
Minv
=
M
.
inv
();
if
(
normb
==
0.0
)
normb
=
1
;
if
((
resid
=
r
.
norm
()
/
normb
)
<=
tol
)
{
tol
=
resid
;
max_iter
=
0
;
return
0
;
}
for
(
int
i
=
0
;
i
<
max_iter
;
i
++
)
{
z
=
Minv
*
r
;
rho
=
r
.
dot
(
z
);
if
(
i
==
0
)
p
=
z
;
else
{
beta
=
rho
/
rho_1
;
tmp
=
p
*
beta
;
p
=
z
+
tmp
;
}
q
=
A
*
p
;
alpha
=
rho
/
p
.
dot
(
q
);
x
+=
p
*
alpha
;
r
-=
q
*
alpha
;
if
((
resid
=
r
.
norm
()
/
normb
)
<=
tol
)
{
tol
=
resid
;
max_iter
=
i
+
1
;
return
0
;
}
rho_1
=
rho
;
}
tol
=
resid
;
return
1
;
}
Event Timeline
Log In to Comment