Page MenuHomec4science

lal_eam.cu
No OneTemporary

File Metadata

Created
Sat, Aug 10, 07:33

lal_eam.cu

// **************************************************************************
// eam.cu
// -------------------
// Trung Dac Nguyen, W. Michael Brown (ORNL)
//
// Device code for acceleration of the eam pair style
//
// __________________________________________________________________________
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
// __________________________________________________________________________
//
// begin :
// email : brownw@ornl.gov nguyentd@ornl.gov
// ***************************************************************************/
#ifdef NV_KERNEL
#include "lal_aux_fun1.h"
#ifndef _DOUBLE_DOUBLE
texture<float4> pos_tex;
texture<float> fp_tex;
texture<float4> rhor_sp1_tex;
texture<float4> rhor_sp2_tex;
texture<float4> frho_sp1_tex;
texture<float4> frho_sp2_tex;
texture<float4> z2r_sp1_tex;
texture<float4> z2r_sp2_tex;
#else
texture<int4> pos_tex;
texture<int2> fp_tex;
texture<int4> rhor_sp1_tex;
texture<int4> rhor_sp2_tex;
texture<int4> frho_sp1_tex;
texture<int4> frho_sp2_tex;
texture<int4> z2r_sp1_tex;
texture<int4> z2r_sp2_tex;
#endif
#else
#define pos_tex x_
#define fp_tex fp_
#define rhor_sp1_tex rhor_spline1
#define rhor_sp2_tex rhor_spline2
#define frho_sp1_tex frho_spline1
#define frho_sp2_tex frho_spline2
#define z2r_sp1_tex z2r_spline1
#define z2r_sp2_tex z2r_spline2
#endif
#define MIN(A,B) ((A) < (B) ? (A) : (B))
#define MAX(A,B) ((A) > (B) ? (A) : (B))
#if (ARCH < 300)
#define store_energy_fp(rho,energy,ii,inum,tid,t_per_atom,offset, \
eflag,vflag,engv,rdrho,nrho,i,rhomax) \
if (t_per_atom>1) { \
__local acctyp red_acc[BLOCK_PAIR]; \
red_acc[tid]=rho; \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
if (offset < s) \
red_acc[tid] += red_acc[tid+s]; \
} \
rho=red_acc[tid]; \
} \
if (offset==0) { \
numtyp p = rho*rdrho + (numtyp)1.0; \
int m=p; \
m = MAX(1,MIN(m,nrho-1)); \
p -= m; \
p = MIN(p,(numtyp)1.0); \
int index = type2frho[itype]*(nrho+1)+m; \
numtyp4 coeff; fetch4(coeff,index,frho_sp1_tex); \
numtyp fp = (coeff.x*p + coeff.y)*p + coeff.z; \
fp_[i]=fp; \
if (eflag>0) { \
fetch4(coeff,index,frho_sp2_tex); \
energy = ((coeff.x*p + coeff.y)*p + coeff.z)*p + coeff.w; \
if (rho > rhomax) energy += fp*(rho-rhomax); \
engv[ii]=energy; \
} \
}
#define store_answers_eam(f, energy, virial, ii, inum, tid, t_per_atom, \
offset, elag, vflag, ans, engv) \
if (t_per_atom>1) { \
__local acctyp red_acc[6][BLOCK_PAIR]; \
red_acc[0][tid]=f.x; \
red_acc[1][tid]=f.y; \
red_acc[2][tid]=f.z; \
red_acc[3][tid]=energy; \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
if (offset < s) { \
for (int r=0; r<4; r++) \
red_acc[r][tid] += red_acc[r][tid+s]; \
} \
} \
f.x=red_acc[0][tid]; \
f.y=red_acc[1][tid]; \
f.z=red_acc[2][tid]; \
energy=red_acc[3][tid]; \
if (vflag>0) { \
for (int r=0; r<6; r++) \
red_acc[r][tid]=virial[r]; \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
if (offset < s) { \
for (int r=0; r<6; r++) \
red_acc[r][tid] += red_acc[r][tid+s]; \
} \
} \
for (int r=0; r<6; r++) \
virial[r]=red_acc[r][tid]; \
} \
} \
if (offset==0) { \
int ei=ii; \
if (eflag>0) { \
engv[ei]+=energy*(acctyp)0.5; \
ei+=inum; \
} \
if (vflag>0) { \
for (int i=0; i<6; i++) { \
engv[ei]=virial[i]*(acctyp)0.5; \
ei+=inum; \
} \
} \
ans[ii]=f; \
}
#else
#define store_energy_fp(rho,energy,ii,inum,tid,t_per_atom,offset, \
eflag,vflag,engv,rdrho,nrho,i,rhomax) \
if (t_per_atom>1) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) \
rho += shfl_xor(rho, s, t_per_atom); \
} \
if (offset==0) { \
numtyp p = rho*rdrho + (numtyp)1.0; \
int m=p; \
m = MAX(1,MIN(m,nrho-1)); \
p -= m; \
p = MIN(p,(numtyp)1.0); \
int index = type2frho[itype]*(nrho+1)+m; \
numtyp4 coeff; fetch4(coeff,index,frho_sp1_tex); \
numtyp fp = (coeff.x*p + coeff.y)*p + coeff.z; \
fp_[i]=fp; \
if (eflag>0) { \
fetch4(coeff,index,frho_sp2_tex); \
energy = ((coeff.x*p + coeff.y)*p + coeff.z)*p + coeff.w; \
if (rho > rhomax) energy += fp*(rho-rhomax); \
engv[ii]=energy; \
} \
}
#define store_answers_eam(f, energy, virial, ii, inum, tid, t_per_atom, \
offset, eflag, vflag, ans, engv) \
if (t_per_atom>1) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
f.x += shfl_xor(f.x, s, t_per_atom); \
f.y += shfl_xor(f.y, s, t_per_atom); \
f.z += shfl_xor(f.z, s, t_per_atom); \
energy += shfl_xor(energy, s, t_per_atom); \
} \
if (vflag>0) { \
for (unsigned int s=t_per_atom/2; s>0; s>>=1) { \
for (int r=0; r<6; r++) \
virial[r] += shfl_xor(virial[r], s, t_per_atom); \
} \
} \
} \
if (offset==0) { \
int ei=ii; \
if (eflag>0) { \
engv[ei]+=energy*(acctyp)0.5; \
ei+=inum; \
} \
if (vflag>0) { \
for (int i=0; i<6; i++) { \
engv[ei]=virial[i]*(acctyp)0.5; \
ei+=inum; \
} \
} \
ans[ii]=f; \
}
#endif
__kernel void k_energy(const __global numtyp4 *restrict x_,
const __global int2 *restrict type2rhor_z2r,
const __global int *restrict type2frho,
const __global numtyp4 *restrict rhor_spline2,
const __global numtyp4 *restrict frho_spline1,
const __global numtyp4 *restrict frho_spline2,
const __global int *dev_nbor,
const __global int *dev_packed,
__global numtyp *restrict fp_,
__global acctyp *restrict engv,
const int eflag, const int inum, const int nbor_pitch,
const int ntypes, const numtyp cutforcesq,
const numtyp rdr, const numtyp rdrho,
const numtyp rhomax, const int nrho,
const int nr, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
acctyp rho = (acctyp)0;
acctyp energy = (acctyp)0;
if (ii<inum) {
int nbor, nbor_end;
int i, numj;
__local int n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int itype=ix.w;
for ( ; nbor<nbor_end; nbor+=n_stride) {
int j=dev_packed[nbor];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<cutforcesq) {
numtyp p = ucl_sqrt(rsq)*rdr + (numtyp)1.0;
int m=p;
m = MIN(m,nr-1);
p -= m;
p = MIN(p,(numtyp)1.0);
int mtype = jtype*ntypes+itype;
int index = type2rhor_z2r[mtype].x*(nr+1)+m;
numtyp4 coeff; fetch4(coeff,index,rhor_sp2_tex);
rho += ((coeff.x*p + coeff.y)*p + coeff.z)*p + coeff.w;
}
} // for nbor
store_energy_fp(rho,energy,ii,inum,tid,t_per_atom,offset,
eflag,vflag,engv,rdrho,nrho,i,rhomax);
} // if ii
}
__kernel void k_energy_fast(const __global numtyp4 *restrict x_,
const __global int2 *restrict type2rhor_z2r_in,
const __global int *restrict type2frho_in,
const __global numtyp4 *restrict rhor_spline2,
const __global numtyp4 *restrict frho_spline1,
const __global numtyp4 *restrict frho_spline2,
const __global int *dev_nbor,
const __global int *dev_packed,
__global numtyp *restrict fp_,
__global acctyp *restrict engv,
const int eflag, const int inum,
const int nbor_pitch, const int ntypes,
const numtyp cutforcesq, const numtyp rdr,
const numtyp rdrho, const numtyp rhomax,
const int nrho, const int nr,
const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local int2 type2rhor_z2r[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
__local int type2frho[MAX_SHARED_TYPES];
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
type2rhor_z2r[tid]=type2rhor_z2r_in[tid];
}
if (tid<MAX_SHARED_TYPES) {
type2frho[tid]=type2frho_in[tid];
}
acctyp rho = (acctyp)0;
acctyp energy = (acctyp)0;
__syncthreads();
if (ii<inum) {
int nbor, nbor_end;
int i, numj;
__local int n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
int itype=ix.w;
for ( ; nbor<nbor_end; nbor+=n_stride) {
int j=dev_packed[nbor];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<cutforcesq) {
numtyp p = ucl_sqrt(rsq)*rdr + (numtyp)1.0;
int m=p;
m = MIN(m,nr-1);
p -= m;
p = MIN(p,(numtyp)1.0);
int jtype=fast_mul((int)MAX_SHARED_TYPES,jx.w);
int mtype = jtype+itype;
int index = type2rhor_z2r[mtype].x*(nr+1)+m;
numtyp4 coeff; fetch4(coeff,index,rhor_sp2_tex);
rho += ((coeff.x*p + coeff.y)*p + coeff.z)*p + coeff.w;
}
} // for nbor
store_energy_fp(rho,energy,ii,inum,tid,t_per_atom,offset,
eflag,vflag,engv,rdrho,nrho,i,rhomax);
} // if ii
}
__kernel void k_eam(const __global numtyp4 *restrict x_,
const __global numtyp *fp_,
const __global int2 *type2rhor_z2r,
const __global numtyp4 *rhor_spline1,
const __global numtyp4 *z2r_spline1,
const __global numtyp4 *z2r_spline2,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *ans,
__global acctyp *engv,
const int eflag, const int vflag, const int inum,
const int nbor_pitch, const int ntypes,
const numtyp cutforcesq, const numtyp rdr, const int nr,
const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
acctyp energy=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0;
f.y=(acctyp)0;
f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
if (ii<inum) {
int nbor, nbor_end;
int i, numj;
__local int n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
numtyp ifp; fetch(ifp,i,fp_tex); //fp_[i];
int itype=ix.w;
for ( ; nbor<nbor_end; nbor+=n_stride) {
int j=dev_packed[nbor];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<cutforcesq) {
numtyp r = ucl_sqrt(rsq);
numtyp p = r*rdr + (numtyp)1.0;
int m=p;
m = MIN(m,nr-1);
p -= m;
p = MIN(p,(numtyp)1.0);
int mtype,index;
numtyp4 coeff;
mtype = itype*ntypes+jtype;
index = type2rhor_z2r[mtype].x*(nr+1)+m;
fetch4(coeff,index,rhor_sp1_tex);
numtyp rhoip = (coeff.x*p + coeff.y)*p + coeff.z;
mtype = jtype*ntypes+itype;
index = type2rhor_z2r[mtype].x*(nr+1)+m;
fetch4(coeff,index,rhor_sp1_tex);
numtyp rhojp = (coeff.x*p + coeff.y)*p + coeff.z;
mtype = itype*ntypes+jtype;
index = type2rhor_z2r[mtype].y*(nr+1)+m;
fetch4(coeff,index,z2r_sp1_tex);
numtyp z2p = (coeff.x*p + coeff.y)*p + coeff.z;
fetch4(coeff,index,z2r_sp2_tex);
numtyp z2 = ((coeff.x*p + coeff.y)*p + coeff.z)*p + coeff.w;
numtyp recip = ucl_recip(r);
numtyp phi = z2*recip;
numtyp phip = z2p*recip - phi*recip;
numtyp psip;
fetch(psip,j,fp_tex);
psip = ifp*rhojp + psip*rhoip + phip;
numtyp force = -psip*recip;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
energy += phi;
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
store_answers_eam(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
} // if ii
}
__kernel void k_eam_fast(const __global numtyp4 *x_,
const __global numtyp *fp_,
const __global int2 *type2rhor_z2r_in,
const __global numtyp4 *rhor_spline1,
const __global numtyp4 *z2r_spline1,
const __global numtyp4 *z2r_spline2,
const __global int *dev_nbor,
const __global int *dev_packed,
__global acctyp4 *ans,
__global acctyp *engv,
const int eflag, const int vflag, const int inum,
const int nbor_pitch, const numtyp cutforcesq,
const numtyp rdr, const int nr, const int t_per_atom) {
int tid, ii, offset;
atom_info(t_per_atom,ii,tid,offset);
__local int2 type2rhor_z2r[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
type2rhor_z2r[tid]=type2rhor_z2r_in[tid];
}
acctyp energy=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
__syncthreads();
if (ii<inum) {
int nbor, nbor_end;
int i, numj;
__local int n_stride;
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
n_stride,nbor_end,nbor);
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
numtyp ifp; fetch(ifp,i,fp_tex); //fp_[i];
int iw=ix.w;
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
for ( ; nbor<nbor_end; nbor+=n_stride) {
int j=dev_packed[nbor];
j &= NEIGHMASK;
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
int jw=jx.w;
int jtype=fast_mul((int)MAX_SHARED_TYPES,jw);
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<cutforcesq) {
numtyp r = ucl_sqrt(rsq);
numtyp p = r*rdr + (numtyp)1.0;
int m=p;
m = MIN(m,nr-1);
p -= m;
p = MIN(p,(numtyp)1.0);
numtyp4 coeff;
int mtype,index;
mtype = itype+jw;
index = type2rhor_z2r[mtype].x*(nr+1)+m;
fetch4(coeff,index,rhor_sp1_tex);
numtyp rhoip = (coeff.x*p + coeff.y)*p + coeff.z;
mtype = jtype+iw;
index = type2rhor_z2r[mtype].x*(nr+1)+m;
fetch4(coeff,index,rhor_sp1_tex);
numtyp rhojp = (coeff.x*p + coeff.y)*p + coeff.z;
mtype = itype+jw;
index = type2rhor_z2r[mtype].y*(nr+1)+m;
fetch4(coeff,index,z2r_sp1_tex);
numtyp z2p = (coeff.x*p + coeff.y)*p + coeff.z;
fetch4(coeff,index,z2r_sp2_tex);
numtyp z2 = ((coeff.x*p + coeff.y)*p + coeff.z)*p + coeff.w;
numtyp recip = ucl_recip(r);
numtyp phi = z2*recip;
numtyp phip = z2p*recip - phi*recip;
numtyp psip;
fetch(psip,j,fp_tex);
psip = ifp*rhojp + psip*rhoip + phip;
numtyp force = -psip*recip;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
energy += phi;
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
store_answers_eam(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
ans,engv);
} // if ii
}

Event Timeline