Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90743540
angle_cosine_shift_exp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 08:58
Size
9 KB
Mime Type
text/x-c
Expires
Wed, Nov 6, 08:58 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22125723
Attached To
rLAMMPS lammps
angle_cosine_shift_exp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Carsten Svaneborg, science@zqex.dk
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include "angle_cosine_shift_exp.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleCosineShiftExp::AngleCosineShiftExp(LAMMPS *lmp) : Angle(lmp) {}
/* ---------------------------------------------------------------------- */
AngleCosineShiftExp::~AngleCosineShiftExp()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(umin);
memory->destroy(a);
memory->destroy(opt1);
memory->destroy(cost);
memory->destroy(sint);
memory->destroy(theta0);
memory->destroy(doExpansion);
}
}
/* ---------------------------------------------------------------------- */
void AngleCosineShiftExp::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type;
double delx1,dely1,delz1,delx2,dely2,delz2;
double eangle,f1[3],f3[3],ff;
double rsq1,rsq2,r1,r2,c,s,a11,a12,a22;
double exp2,aa,uumin,cccpsss,cssmscc;
eangle = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// c = cosine of angle
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
// C= sine of angle
s = sqrt(1.0 - c*c);
if (s < SMALL) s = SMALL;
// force & energy
aa=a[type];
uumin=umin[type];
cccpsss = c*cost[type]+s*sint[type];
cssmscc = c*sint[type]-s*cost[type];
if (doExpansion[type])
{ // |a|<0.01 so use expansions relative precision <1e-5
// std::cout << "Using expansion\n";
if (eflag) eangle = -0.125*(1+cccpsss)*(4+aa*(cccpsss-1))*uumin;
ff=0.25*uumin*cssmscc*(2+aa*cccpsss)/s;
}
else
{
// std::cout << "Not using expansion\n";
exp2=exp(0.5*aa*(1+cccpsss));
if (eflag) eangle = opt1[type]*(1-exp2);
ff=0.5*a[type]*opt1[type]*exp2*cssmscc/s;
}
a11 = ff*c/ rsq1;
a12 = -ff / (r1*r2);
a22 = ff*c/ rsq2;
f1[0] = a11*delx1 + a12*delx2;
f1[1] = a11*dely1 + a12*dely2;
f1[2] = a11*delz1 + a12*delz2;
f3[0] = a22*delx2 + a12*delx1;
f3[1] = a22*dely2 + a12*dely1;
f3[2] = a22*delz2 + a12*delz1;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
}
}
/* ---------------------------------------------------------------------- */
void AngleCosineShiftExp::allocate()
{
allocated = 1;
int n = atom->nangletypes;
memory->create(doExpansion, n+1, "angle:doExpansion");
memory->create(umin , n+1, "angle:umin");
memory->create(a , n+1, "angle:a");
memory->create(sint , n+1, "angle:sint");
memory->create(cost , n+1, "angle:cost");
memory->create(opt1 , n+1, "angle:opt1");
memory->create(theta0 , n+1, "angle:theta0");
memory->create(setflag , n+1, "angle:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one type
------------------------------------------------------------------------- */
void AngleCosineShiftExp::coeff(int narg, char **arg)
{
if (narg != 4) error->all(FLERR,"Incorrect args for angle coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(arg[0],atom->nangletypes,ilo,ihi);
double umin_ = force->numeric(FLERR,arg[1]);
double theta0_ = force->numeric(FLERR,arg[2]);
double a_ = force->numeric(FLERR,arg[3]);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
doExpansion[i]=(fabs(a_)<0.001);
umin[i] = umin_;
a[i] = a_;
cost[i] = cos(theta0_*MY_PI / 180.0);
sint[i] = sin(theta0_*MY_PI / 180.0);
theta0[i]= theta0_*MY_PI / 180.0;
if (!doExpansion[i]) opt1[i]=umin_/(exp(a_)-1);
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
}
/* ---------------------------------------------------------------------- */
double AngleCosineShiftExp::equilibrium_angle(int i)
{
return theta0[i];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleCosineShiftExp::write_restart(FILE *fp)
{
fwrite(&umin[1],sizeof(double),atom->nangletypes,fp);
fwrite(&a[1],sizeof(double),atom->nangletypes,fp);
fwrite(&cost[1],sizeof(double),atom->nangletypes,fp);
fwrite(&sint[1],sizeof(double),atom->nangletypes,fp);
fwrite(&theta0[1],sizeof(double),atom->nangletypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleCosineShiftExp::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0)
{
fread(&umin[1],sizeof(double),atom->nangletypes,fp);
fread(&a[1],sizeof(double),atom->nangletypes,fp);
fread(&cost[1],sizeof(double),atom->nangletypes,fp);
fread(&sint[1],sizeof(double),atom->nangletypes,fp);
fread(&theta0[1],sizeof(double),atom->nangletypes,fp);
}
MPI_Bcast(&umin[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&a[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&cost[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&sint[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&theta0[1],atom->nangletypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nangletypes; i++)
{
setflag[i] = 1;
doExpansion[i]=(fabs(a[i])<0.01);
if (!doExpansion[i]) opt1[i]=umin[i]/(exp(a[i])-1);
}
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void AngleCosineShiftExp::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nangletypes; i++)
fprintf(fp,"%d %g %g %g\n",i,umin[i],theta0[i]/MY_PI*180.0,a[i]);
}
/* ---------------------------------------------------------------------- */
double AngleCosineShiftExp::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double s=sqrt(1.0-c*c);
double cccpsss=c*cost[type]+s*sint[type];
if (doExpansion[type])
{
return -0.125*(1+cccpsss)*(4+a[type]*(cccpsss-1))*umin[type];
}
else
{
return opt1[type]*(1-exp(0.5*a[type]*(1+cccpsss)));
}
}
Event Timeline
Log In to Comment