Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91277033
pair_adp_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 9, 14:32
Size
12 KB
Mime Type
text/x-c++
Expires
Mon, Nov 11, 14:32 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22234806
Attached To
rLAMMPS lammps
pair_adp_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
This software is distributed under the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include <math.h>
#include <string.h>
#include "pair_adp_omp.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "suffix.h"
using
namespace
LAMMPS_NS
;
/* ---------------------------------------------------------------------- */
PairADPOMP
::
PairADPOMP
(
LAMMPS
*
lmp
)
:
PairADP
(
lmp
),
ThrOMP
(
lmp
,
THR_PAIR
)
{
suffix_flag
|=
Suffix
::
OMP
;
respa_enable
=
0
;
}
/* ---------------------------------------------------------------------- */
void
PairADPOMP
::
compute
(
int
eflag
,
int
vflag
)
{
if
(
eflag
||
vflag
)
{
ev_setup
(
eflag
,
vflag
);
}
else
evflag
=
vflag_fdotr
=
eflag_global
=
eflag_atom
=
0
;
const
int
nlocal
=
atom
->
nlocal
;
const
int
nall
=
nlocal
+
atom
->
nghost
;
const
int
nthreads
=
comm
->
nthreads
;
const
int
inum
=
list
->
inum
;
// grow energy and fp arrays if necessary
// need to be atom->nmax in length
if
(
atom
->
nmax
>
nmax
)
{
memory
->
destroy
(
rho
);
memory
->
destroy
(
fp
);
memory
->
destroy
(
mu
);
memory
->
destroy
(
lambda
);
nmax
=
atom
->
nmax
;
memory
->
create
(
rho
,
nthreads
*
nmax
,
"pair:rho"
);
memory
->
create
(
fp
,
nmax
,
"pair:fp"
);
memory
->
create
(
mu
,
nthreads
*
nmax
,
3
,
"pair:mu"
);
memory
->
create
(
lambda
,
nthreads
*
nmax
,
6
,
"pair:lambda"
);
}
#if defined(_OPENMP)
#pragma omp parallel default(none) shared(eflag,vflag)
#endif
{
int
ifrom
,
ito
,
tid
;
loop_setup_thr
(
ifrom
,
ito
,
tid
,
inum
,
nthreads
);
ThrData
*
thr
=
fix
->
get_thr
(
tid
);
thr
->
timer
(
Timer
::
START
);
ev_setup_thr
(
eflag
,
vflag
,
nall
,
eatom
,
vatom
,
thr
);
if
(
force
->
newton_pair
)
thr
->
init_adp
(
nall
,
rho
,
mu
,
lambda
);
else
thr
->
init_adp
(
nlocal
,
rho
,
mu
,
lambda
);
if
(
evflag
)
{
if
(
eflag
)
{
if
(
force
->
newton_pair
)
eval
<
1
,
1
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
1
,
1
,
0
>
(
ifrom
,
ito
,
thr
);
}
else
{
if
(
force
->
newton_pair
)
eval
<
1
,
0
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
1
,
0
,
0
>
(
ifrom
,
ito
,
thr
);
}
}
else
{
if
(
force
->
newton_pair
)
eval
<
0
,
0
,
1
>
(
ifrom
,
ito
,
thr
);
else
eval
<
0
,
0
,
0
>
(
ifrom
,
ito
,
thr
);
}
thr
->
timer
(
Timer
::
PAIR
);
reduce_thr
(
this
,
eflag
,
vflag
,
thr
);
}
// end of omp parallel region
}
template
<
int
EVFLAG
,
int
EFLAG
,
int
NEWTON_PAIR
>
void
PairADPOMP
::
eval
(
int
iifrom
,
int
iito
,
ThrData
*
const
thr
)
{
int
i
,
j
,
ii
,
jj
,
m
,
jnum
,
itype
,
jtype
;
double
xtmp
,
ytmp
,
ztmp
,
delx
,
dely
,
delz
,
evdwl
,
fpair
;
double
rsq
,
r
,
p
,
rhoip
,
rhojp
,
z2
,
z2p
,
recip
,
phip
,
psip
,
phi
;
double
u2
,
u2p
,
w2
,
w2p
,
nu
;
double
*
coeff
;
int
*
ilist
,
*
jlist
,
*
numneigh
,
**
firstneigh
;
double
delmux
,
delmuy
,
delmuz
,
trdelmu
,
tradellam
;
double
adpx
,
adpy
,
adpz
,
fx
,
fy
,
fz
;
double
sumlamxx
,
sumlamyy
,
sumlamzz
,
sumlamyz
,
sumlamxz
,
sumlamxy
;
evdwl
=
0.0
;
const
dbl3_t
*
_noalias
const
x
=
(
dbl3_t
*
)
atom
->
x
[
0
];
dbl3_t
*
_noalias
const
f
=
(
dbl3_t
*
)
thr
->
get_f
()[
0
];
double
*
const
rho_t
=
thr
->
get_rho
();
double
*
const
*
const
mu_t
=
thr
->
get_mu
();
double
*
const
*
const
lambda_t
=
thr
->
get_lambda
();
const
int
tid
=
thr
->
get_tid
();
int
*
type
=
atom
->
type
;
int
nlocal
=
atom
->
nlocal
;
int
nall
=
nlocal
+
atom
->
nghost
;
double
fxtmp
,
fytmp
,
fztmp
;
ilist
=
list
->
ilist
;
numneigh
=
list
->
numneigh
;
firstneigh
=
list
->
firstneigh
;
// rho = density at each atom
// loop over neighbors of my atoms
for
(
ii
=
iifrom
;
ii
<
iito
;
ii
++
)
{
i
=
ilist
[
ii
];
xtmp
=
x
[
i
].
x
;
ytmp
=
x
[
i
].
y
;
ztmp
=
x
[
i
].
z
;
itype
=
type
[
i
];
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
delx
=
xtmp
-
x
[
j
].
x
;
dely
=
ytmp
-
x
[
j
].
y
;
delz
=
ztmp
-
x
[
j
].
z
;
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
if
(
rsq
<
cutforcesq
)
{
jtype
=
type
[
j
];
p
=
sqrt
(
rsq
)
*
rdr
+
1.0
;
m
=
static_cast
<
int
>
(
p
);
m
=
MIN
(
m
,
nr
-
1
);
p
-=
m
;
p
=
MIN
(
p
,
1.0
);
coeff
=
rhor_spline
[
type2rhor
[
jtype
][
itype
]][
m
];
rho_t
[
i
]
+=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
coeff
=
u2r_spline
[
type2u2r
[
jtype
][
itype
]][
m
];
u2
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
mu_t
[
i
][
0
]
+=
u2
*
delx
;
mu_t
[
i
][
1
]
+=
u2
*
dely
;
mu_t
[
i
][
2
]
+=
u2
*
delz
;
coeff
=
w2r_spline
[
type2w2r
[
jtype
][
itype
]][
m
];
w2
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
lambda_t
[
i
][
0
]
+=
w2
*
delx
*
delx
;
lambda_t
[
i
][
1
]
+=
w2
*
dely
*
dely
;
lambda_t
[
i
][
2
]
+=
w2
*
delz
*
delz
;
lambda_t
[
i
][
3
]
+=
w2
*
dely
*
delz
;
lambda_t
[
i
][
4
]
+=
w2
*
delx
*
delz
;
lambda_t
[
i
][
5
]
+=
w2
*
delx
*
dely
;
if
(
NEWTON_PAIR
||
j
<
nlocal
)
{
// verify sign difference for mu and lambda
coeff
=
rhor_spline
[
type2rhor
[
itype
][
jtype
]][
m
];
rho_t
[
j
]
+=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
coeff
=
u2r_spline
[
type2u2r
[
itype
][
jtype
]][
m
];
u2
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
mu_t
[
j
][
0
]
-=
u2
*
delx
;
mu_t
[
j
][
1
]
-=
u2
*
dely
;
mu_t
[
j
][
2
]
-=
u2
*
delz
;
coeff
=
w2r_spline
[
type2w2r
[
itype
][
jtype
]][
m
];
w2
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
lambda_t
[
j
][
0
]
+=
w2
*
delx
*
delx
;
lambda_t
[
j
][
1
]
+=
w2
*
dely
*
dely
;
lambda_t
[
j
][
2
]
+=
w2
*
delz
*
delz
;
lambda_t
[
j
][
3
]
+=
w2
*
dely
*
delz
;
lambda_t
[
j
][
4
]
+=
w2
*
delx
*
delz
;
lambda_t
[
j
][
5
]
+=
w2
*
delx
*
dely
;
}
}
}
}
// wait until all threads are done with computation
sync_threads
();
// communicate and sum densities
if
(
NEWTON_PAIR
)
{
// reduce per thread density
thr
->
timer
(
Timer
::
PAIR
);
data_reduce_thr
(
&
(
rho
[
0
]),
nall
,
comm
->
nthreads
,
1
,
tid
);
data_reduce_thr
(
&
(
mu
[
0
][
0
]),
nall
,
comm
->
nthreads
,
3
,
tid
);
data_reduce_thr
(
&
(
lambda
[
0
][
0
]),
nall
,
comm
->
nthreads
,
6
,
tid
);
// wait until reduction is complete
sync_threads
();
#if defined(_OPENMP)
#pragma omp master
#endif
{
comm
->
reverse_comm_pair
(
this
);
}
// wait until master thread is done with communication
sync_threads
();
}
else
{
// reduce per thread density
thr
->
timer
(
Timer
::
PAIR
);
data_reduce_thr
(
&
(
rho
[
0
]),
nlocal
,
comm
->
nthreads
,
1
,
tid
);
data_reduce_thr
(
&
(
mu
[
0
][
0
]),
nlocal
,
comm
->
nthreads
,
3
,
tid
);
data_reduce_thr
(
&
(
lambda
[
0
][
0
]),
nlocal
,
comm
->
nthreads
,
6
,
tid
);
// wait until reduction is complete
sync_threads
();
}
// fp = derivative of embedding energy at each atom
// phi = embedding energy at each atom
for
(
ii
=
iifrom
;
ii
<
iito
;
ii
++
)
{
i
=
ilist
[
ii
];
p
=
rho
[
i
]
*
rdrho
+
1.0
;
m
=
static_cast
<
int
>
(
p
);
m
=
MAX
(
1
,
MIN
(
m
,
nrho
-
1
));
p
-=
m
;
p
=
MIN
(
p
,
1.0
);
coeff
=
frho_spline
[
type2frho
[
type
[
i
]]][
m
];
fp
[
i
]
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
if
(
EFLAG
)
{
phi
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
phi
+=
0.5
*
(
mu
[
i
][
0
]
*
mu
[
i
][
0
]
+
mu
[
i
][
1
]
*
mu
[
i
][
1
]
+
mu
[
i
][
2
]
*
mu
[
i
][
2
]);
phi
+=
0.5
*
(
lambda
[
i
][
0
]
*
lambda
[
i
][
0
]
+
lambda
[
i
][
1
]
*
lambda
[
i
][
1
]
+
lambda
[
i
][
2
]
*
lambda
[
i
][
2
]);
phi
+=
1.0
*
(
lambda
[
i
][
3
]
*
lambda
[
i
][
3
]
+
lambda
[
i
][
4
]
*
lambda
[
i
][
4
]
+
lambda
[
i
][
5
]
*
lambda
[
i
][
5
]);
phi
-=
1.0
/
6.0
*
(
lambda
[
i
][
0
]
+
lambda
[
i
][
1
]
+
lambda
[
i
][
2
])
*
(
lambda
[
i
][
0
]
+
lambda
[
i
][
1
]
+
lambda
[
i
][
2
]);
e_tally_thr
(
this
,
i
,
i
,
nlocal
,
/* newton_pair */
1
,
phi
,
0.0
,
thr
);
}
}
// wait until all theads are done with computation
sync_threads
();
// communicate derivative of embedding function
// MPI communication only on master thread
#if defined(_OPENMP)
#pragma omp master
#endif
{
comm
->
forward_comm_pair
(
this
);
}
// wait until master thread is done with communication
sync_threads
();
// compute forces on each atom
// loop over neighbors of my atoms
for
(
ii
=
iifrom
;
ii
<
iito
;
ii
++
)
{
i
=
ilist
[
ii
];
xtmp
=
x
[
i
].
x
;
ytmp
=
x
[
i
].
y
;
ztmp
=
x
[
i
].
z
;
itype
=
type
[
i
];
fxtmp
=
fytmp
=
fztmp
=
0.0
;
jlist
=
firstneigh
[
i
];
jnum
=
numneigh
[
i
];
for
(
jj
=
0
;
jj
<
jnum
;
jj
++
)
{
j
=
jlist
[
jj
];
j
&=
NEIGHMASK
;
delx
=
xtmp
-
x
[
j
].
x
;
dely
=
ytmp
-
x
[
j
].
y
;
delz
=
ztmp
-
x
[
j
].
z
;
rsq
=
delx
*
delx
+
dely
*
dely
+
delz
*
delz
;
if
(
rsq
<
cutforcesq
)
{
jtype
=
type
[
j
];
r
=
sqrt
(
rsq
);
p
=
r
*
rdr
+
1.0
;
m
=
static_cast
<
int
>
(
p
);
m
=
MIN
(
m
,
nr
-
1
);
p
-=
m
;
p
=
MIN
(
p
,
1.0
);
// rhoip = derivative of (density at atom j due to atom i)
// rhojp = derivative of (density at atom i due to atom j)
// phi = pair potential energy
// phip = phi'
// z2 = phi * r
// z2p = (phi * r)' = (phi' r) + phi
// u2 = u
// u2p = u'
// w2 = w
// w2p = w'
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
coeff
=
rhor_spline
[
type2rhor
[
itype
][
jtype
]][
m
];
rhoip
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
coeff
=
rhor_spline
[
type2rhor
[
jtype
][
itype
]][
m
];
rhojp
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
coeff
=
z2r_spline
[
type2z2r
[
itype
][
jtype
]][
m
];
z2p
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
z2
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
coeff
=
u2r_spline
[
type2u2r
[
itype
][
jtype
]][
m
];
u2p
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
u2
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
coeff
=
w2r_spline
[
type2w2r
[
itype
][
jtype
]][
m
];
w2p
=
(
coeff
[
0
]
*
p
+
coeff
[
1
])
*
p
+
coeff
[
2
];
w2
=
((
coeff
[
3
]
*
p
+
coeff
[
4
])
*
p
+
coeff
[
5
])
*
p
+
coeff
[
6
];
recip
=
1.0
/
r
;
phi
=
z2
*
recip
;
phip
=
z2p
*
recip
-
phi
*
recip
;
psip
=
fp
[
i
]
*
rhojp
+
fp
[
j
]
*
rhoip
+
phip
;
fpair
=
-
psip
*
recip
;
delmux
=
mu
[
i
][
0
]
-
mu
[
j
][
0
];
delmuy
=
mu
[
i
][
1
]
-
mu
[
j
][
1
];
delmuz
=
mu
[
i
][
2
]
-
mu
[
j
][
2
];
trdelmu
=
delmux
*
delx
+
delmuy
*
dely
+
delmuz
*
delz
;
sumlamxx
=
lambda
[
i
][
0
]
+
lambda
[
j
][
0
];
sumlamyy
=
lambda
[
i
][
1
]
+
lambda
[
j
][
1
];
sumlamzz
=
lambda
[
i
][
2
]
+
lambda
[
j
][
2
];
sumlamyz
=
lambda
[
i
][
3
]
+
lambda
[
j
][
3
];
sumlamxz
=
lambda
[
i
][
4
]
+
lambda
[
j
][
4
];
sumlamxy
=
lambda
[
i
][
5
]
+
lambda
[
j
][
5
];
tradellam
=
sumlamxx
*
delx
*
delx
+
sumlamyy
*
dely
*
dely
+
sumlamzz
*
delz
*
delz
+
2.0
*
sumlamxy
*
delx
*
dely
+
2.0
*
sumlamxz
*
delx
*
delz
+
2.0
*
sumlamyz
*
dely
*
delz
;
nu
=
sumlamxx
+
sumlamyy
+
sumlamzz
;
adpx
=
delmux
*
u2
+
trdelmu
*
u2p
*
delx
*
recip
+
2.0
*
w2
*
(
sumlamxx
*
delx
+
sumlamxy
*
dely
+
sumlamxz
*
delz
)
+
w2p
*
delx
*
recip
*
tradellam
-
1.0
/
3.0
*
nu
*
(
w2p
*
r
+
2.0
*
w2
)
*
delx
;
adpy
=
delmuy
*
u2
+
trdelmu
*
u2p
*
dely
*
recip
+
2.0
*
w2
*
(
sumlamxy
*
delx
+
sumlamyy
*
dely
+
sumlamyz
*
delz
)
+
w2p
*
dely
*
recip
*
tradellam
-
1.0
/
3.0
*
nu
*
(
w2p
*
r
+
2.0
*
w2
)
*
dely
;
adpz
=
delmuz
*
u2
+
trdelmu
*
u2p
*
delz
*
recip
+
2.0
*
w2
*
(
sumlamxz
*
delx
+
sumlamyz
*
dely
+
sumlamzz
*
delz
)
+
w2p
*
delz
*
recip
*
tradellam
-
1.0
/
3.0
*
nu
*
(
w2p
*
r
+
2.0
*
w2
)
*
delz
;
adpx
*=-
1.0
;
adpy
*=-
1.0
;
adpz
*=-
1.0
;
fx
=
delx
*
fpair
+
adpx
;
fy
=
dely
*
fpair
+
adpy
;
fz
=
delz
*
fpair
+
adpz
;
fxtmp
+=
fx
;
fytmp
+=
fy
;
fztmp
+=
fz
;
if
(
NEWTON_PAIR
||
j
<
nlocal
)
{
f
[
j
].
x
-=
fx
;
f
[
j
].
y
-=
fy
;
f
[
j
].
z
-=
fz
;
}
if
(
EFLAG
)
evdwl
=
phi
;
if
(
EVFLAG
)
ev_tally_xyz_thr
(
this
,
i
,
j
,
nlocal
,
NEWTON_PAIR
,
evdwl
,
0.0
,
fx
,
fy
,
fz
,
delx
,
dely
,
delz
,
thr
);
}
}
f
[
i
].
x
+=
fxtmp
;
f
[
i
].
y
+=
fytmp
;
f
[
i
].
z
+=
fztmp
;
}
}
/* ---------------------------------------------------------------------- */
double
PairADPOMP
::
memory_usage
()
{
double
bytes
=
memory_usage_thr
();
bytes
+=
PairADP
::
memory_usage
();
bytes
+=
(
comm
->
nthreads
-
1
)
*
nmax
*
(
10
*
sizeof
(
double
)
+
3
*
sizeof
(
double
*
));
return
bytes
;
}
Event Timeline
Log In to Comment