Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91415266
compute_heat_flux.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 21:41
Size
5 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 21:41 (2 d)
Engine
blob
Format
Raw Data
Handle
22259972
Attached To
rLAMMPS lammps
compute_heat_flux.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: German Samolyuk (ORNL) and
Mario Pinto (Computational Research Lab, Pune, India)
------------------------------------------------------------------------- */
#include <math.h>
#include <string.h>
#include "compute_heat_flux.h"
#include "atom.h"
#include "update.h"
#include "modify.h"
#include "force.h"
#include "group.h"
#include "error.h"
using namespace LAMMPS_NS;
#define INVOKED_PERATOM 8
/* ---------------------------------------------------------------------- */
ComputeHeatFlux::ComputeHeatFlux(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg),
id_ke(NULL), id_pe(NULL), id_stress(NULL)
{
if (narg != 6) error->all(FLERR,"Illegal compute heat/flux command");
vector_flag = 1;
size_vector = 6;
extvector = 1;
// store ke/atom, pe/atom, stress/atom IDs used by heat flux computation
// insure they are valid for these computations
int n = strlen(arg[3]) + 1;
id_ke = new char[n];
strcpy(id_ke,arg[3]);
n = strlen(arg[4]) + 1;
id_pe = new char[n];
strcpy(id_pe,arg[4]);
n = strlen(arg[5]) + 1;
id_stress = new char[n];
strcpy(id_stress,arg[5]);
int ike = modify->find_compute(id_ke);
int ipe = modify->find_compute(id_pe);
int istress = modify->find_compute(id_stress);
if (ike < 0 || ipe < 0 || istress < 0)
error->all(FLERR,"Could not find compute heat/flux compute ID");
if (strcmp(modify->compute[ike]->style,"ke/atom") != 0)
error->all(FLERR,"Compute heat/flux compute ID does not compute ke/atom");
if (modify->compute[ipe]->peatomflag == 0)
error->all(FLERR,"Compute heat/flux compute ID does not compute pe/atom");
if (modify->compute[istress]->pressatomflag == 0)
error->all(FLERR,
"Compute heat/flux compute ID does not compute stress/atom");
vector = new double[6];
}
/* ---------------------------------------------------------------------- */
ComputeHeatFlux::~ComputeHeatFlux()
{
delete [] id_ke;
delete [] id_pe;
delete [] id_stress;
delete [] vector;
}
/* ---------------------------------------------------------------------- */
void ComputeHeatFlux::init()
{
// error checks
int ike = modify->find_compute(id_ke);
int ipe = modify->find_compute(id_pe);
int istress = modify->find_compute(id_stress);
if (ike < 0 || ipe < 0 || istress < 0)
error->all(FLERR,"Could not find compute heat/flux compute ID");
c_ke = modify->compute[ike];
c_pe = modify->compute[ipe];
c_stress = modify->compute[istress];
}
/* ---------------------------------------------------------------------- */
void ComputeHeatFlux::compute_vector()
{
invoked_vector = update->ntimestep;
// invoke 3 computes if they haven't been already
if (!(c_ke->invoked_flag & INVOKED_PERATOM)) {
c_ke->compute_peratom();
c_ke->invoked_flag |= INVOKED_PERATOM;
}
if (!(c_pe->invoked_flag & INVOKED_PERATOM)) {
c_pe->compute_peratom();
c_pe->invoked_flag |= INVOKED_PERATOM;
}
if (!(c_stress->invoked_flag & INVOKED_PERATOM)) {
c_stress->compute_peratom();
c_stress->invoked_flag |= INVOKED_PERATOM;
}
// heat flux vector = jc[3] + jv[3]
// jc[3] = convective portion of heat flux = sum_i (ke_i + pe_i) v_i[3]
// jv[3] = virial portion of heat flux = sum_i (stress_tensor_i . v_i[3])
// normalization by volume is not included
double *ke = c_ke->vector_atom;
double *pe = c_pe->vector_atom;
double **stress = c_stress->array_atom;
double **v = atom->v;
int *mask = atom->mask;
int nlocal = atom->nlocal;
double jc[3] = {0.0,0.0,0.0};
double jv[3] = {0.0,0.0,0.0};
double eng;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
eng = pe[i] + ke[i];
jc[0] += eng*v[i][0];
jc[1] += eng*v[i][1];
jc[2] += eng*v[i][2];
jv[0] -= stress[i][0]*v[i][0] + stress[i][3]*v[i][1] +
stress[i][4]*v[i][2];
jv[1] -= stress[i][3]*v[i][0] + stress[i][1]*v[i][1] +
stress[i][5]*v[i][2];
jv[2] -= stress[i][4]*v[i][0] + stress[i][5]*v[i][1] +
stress[i][2]*v[i][2];
}
}
// convert jv from stress*volume to energy units via nktv2p factor
double nktv2p = force->nktv2p;
jv[0] /= nktv2p;
jv[1] /= nktv2p;
jv[2] /= nktv2p;
// sum across all procs
// 1st 3 terms are total heat flux
// 2nd 3 terms are just conductive portion
double data[6] = {jc[0]+jv[0],jc[1]+jv[1],jc[2]+jv[2],jc[0],jc[1],jc[2]};
MPI_Allreduce(data,vector,6,MPI_DOUBLE,MPI_SUM,world);
}
Event Timeline
Log In to Comment