Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98198288
dihedral_helix_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Jan 10, 23:26
Size
11 KB
Mime Type
text/x-c++
Expires
Sun, Jan 12, 23:26 (2 d)
Engine
blob
Format
Raw Data
Handle
23529501
Attached To
rLAMMPS lammps
dihedral_helix_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Naveen Michaud-Agrawal (Johns Hopkins U) and
Mark Stevens (Sandia)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "mpi.h"
#include "dihedral_helix_omp.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "update.h"
#include "memory.h"
#include "error.h"
#if defined(_OPENMP)
#include <omp.h>
#endif
using
namespace
LAMMPS_NS
;
#define MIN(A,B) ((A) < (B)) ? (A) : (B)
#define MAX(A,B) ((A) > (B)) ? (A) : (B)
#define TOLERANCE 0.05
#define SMALL 0.001
#define SMALLER 0.00001
/* ---------------------------------------------------------------------- */
DihedralHelixOMP
::
DihedralHelixOMP
(
LAMMPS
*
lmp
)
:
DihedralOMP
(
lmp
)
{}
/* ---------------------------------------------------------------------- */
DihedralHelixOMP
::~
DihedralHelixOMP
()
{
if
(
allocated
)
{
memory
->
sfree
(
setflag
);
memory
->
sfree
(
aphi
);
memory
->
sfree
(
bphi
);
memory
->
sfree
(
cphi
);
}
}
/* ---------------------------------------------------------------------- */
void
DihedralHelixOMP
::
compute
(
int
eflag
,
int
vflag
)
{
if
(
eflag
||
vflag
)
{
ev_setup
(
eflag
,
vflag
);
ev_setup_thr
(
eflag
,
vflag
);
}
else
evflag
=
0
;
if
(
evflag
)
{
if
(
eflag
)
{
if
(
force
->
newton_bond
)
return
eval
<
1
,
1
,
1
>
();
else
return
eval
<
1
,
1
,
0
>
();
}
else
{
if
(
force
->
newton_bond
)
return
eval
<
1
,
0
,
1
>
();
else
return
eval
<
1
,
0
,
0
>
();
}
}
else
{
if
(
force
->
newton_bond
)
return
eval
<
0
,
0
,
1
>
();
else
return
eval
<
0
,
0
,
0
>
();
}
}
template
<
int
EVFLAG
,
int
EFLAG
,
int
NEWTON_BOND
>
void
DihedralHelixOMP
::
eval
()
{
#if defined(_OPENMP)
#pragma omp parallel default(shared)
#endif
{
int
i1
,
i2
,
i3
,
i4
,
n
,
type
,
tid
;
double
vb1x
,
vb1y
,
vb1z
,
vb2x
,
vb2y
,
vb2z
,
vb3x
,
vb3y
,
vb3z
,
vb2xm
,
vb2ym
,
vb2zm
;
double
edihedral
,
f1
[
3
],
f2
[
3
],
f3
[
3
],
f4
[
3
];
double
sb1
,
sb2
,
sb3
,
rb1
,
rb3
,
c0
,
b1mag2
,
b1mag
,
b2mag2
;
double
b2mag
,
b3mag2
,
b3mag
,
ctmp
,
r12c1
,
c1mag
,
r12c2
;
double
c2mag
,
sc1
,
sc2
,
s1
,
s12
,
c
,
p
,
pd
,
a
,
a11
,
a22
;
double
a33
,
a12
,
a13
,
a23
,
sx2
,
sy2
,
sz2
;
double
s2
,
cx
,
cy
,
cz
,
cmag
,
dx
,
phi
,
si
,
siinv
,
sin2
;
edihedral
=
0.0
;
const
int
nlocal
=
atom
->
nlocal
;
const
int
nall
=
nlocal
+
atom
->
nghost
;
const
int
nthreads
=
comm
->
nthreads
;
double
**
x
=
atom
->
x
;
double
**
f
=
atom
->
f
;
int
**
dihedrallist
=
neighbor
->
dihedrallist
;
int
ndihedrallist
=
neighbor
->
ndihedrallist
;
int
newton_bond
=
force
->
newton_bond
;
double
qqrd2e
=
force
->
qqrd2e
;
// loop over neighbors of my atoms
int
nnfrom
,
nnto
;
f
=
loop_setup_thr
(
f
,
nnfrom
,
nnto
,
tid
,
ndihedrallist
,
nall
,
nthreads
);
for
(
n
=
nnfrom
;
n
<
nnto
;
++
n
)
{
i1
=
dihedrallist
[
n
][
0
];
i2
=
dihedrallist
[
n
][
1
];
i3
=
dihedrallist
[
n
][
2
];
i4
=
dihedrallist
[
n
][
3
];
type
=
dihedrallist
[
n
][
4
];
// 1st bond
vb1x
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
vb1y
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
vb1z
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
vb1x
,
vb1y
,
vb1z
);
// 2nd bond
vb2x
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
vb2y
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
vb2z
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
vb2x
,
vb2y
,
vb2z
);
vb2xm
=
-
vb2x
;
vb2ym
=
-
vb2y
;
vb2zm
=
-
vb2z
;
domain
->
minimum_image
(
vb2xm
,
vb2ym
,
vb2zm
);
// 3rd bond
vb3x
=
x
[
i4
][
0
]
-
x
[
i3
][
0
];
vb3y
=
x
[
i4
][
1
]
-
x
[
i3
][
1
];
vb3z
=
x
[
i4
][
2
]
-
x
[
i3
][
2
];
domain
->
minimum_image
(
vb3x
,
vb3y
,
vb3z
);
// c0 calculation
sb1
=
1.0
/
(
vb1x
*
vb1x
+
vb1y
*
vb1y
+
vb1z
*
vb1z
);
sb2
=
1.0
/
(
vb2x
*
vb2x
+
vb2y
*
vb2y
+
vb2z
*
vb2z
);
sb3
=
1.0
/
(
vb3x
*
vb3x
+
vb3y
*
vb3y
+
vb3z
*
vb3z
);
rb1
=
sqrt
(
sb1
);
rb3
=
sqrt
(
sb3
);
c0
=
(
vb1x
*
vb3x
+
vb1y
*
vb3y
+
vb1z
*
vb3z
)
*
rb1
*
rb3
;
// 1st and 2nd angle
b1mag2
=
vb1x
*
vb1x
+
vb1y
*
vb1y
+
vb1z
*
vb1z
;
b1mag
=
sqrt
(
b1mag2
);
b2mag2
=
vb2x
*
vb2x
+
vb2y
*
vb2y
+
vb2z
*
vb2z
;
b2mag
=
sqrt
(
b2mag2
);
b3mag2
=
vb3x
*
vb3x
+
vb3y
*
vb3y
+
vb3z
*
vb3z
;
b3mag
=
sqrt
(
b3mag2
);
ctmp
=
vb1x
*
vb2x
+
vb1y
*
vb2y
+
vb1z
*
vb2z
;
r12c1
=
1.0
/
(
b1mag
*
b2mag
);
c1mag
=
ctmp
*
r12c1
;
ctmp
=
vb2xm
*
vb3x
+
vb2ym
*
vb3y
+
vb2zm
*
vb3z
;
r12c2
=
1.0
/
(
b2mag
*
b3mag
);
c2mag
=
ctmp
*
r12c2
;
// cos and sin of 2 angles and final c
sin2
=
MAX
(
1.0
-
c1mag
*
c1mag
,
0.0
);
sc1
=
sqrt
(
sin2
);
if
(
sc1
<
SMALL
)
sc1
=
SMALL
;
sc1
=
1.0
/
sc1
;
sin2
=
MAX
(
1.0
-
c2mag
*
c2mag
,
0.0
);
sc2
=
sqrt
(
sin2
);
if
(
sc2
<
SMALL
)
sc2
=
SMALL
;
sc2
=
1.0
/
sc2
;
s1
=
sc1
*
sc1
;
s2
=
sc2
*
sc2
;
s12
=
sc1
*
sc2
;
c
=
(
c0
+
c1mag
*
c2mag
)
*
s12
;
cx
=
vb1y
*
vb2z
-
vb1z
*
vb2y
;
cy
=
vb1z
*
vb2x
-
vb1x
*
vb2z
;
cz
=
vb1x
*
vb2y
-
vb1y
*
vb2x
;
cmag
=
sqrt
(
cx
*
cx
+
cy
*
cy
+
cz
*
cz
);
dx
=
(
cx
*
vb3x
+
cy
*
vb3y
+
cz
*
vb3z
)
/
cmag
/
b3mag
;
// error check
if
(
c
>
1.0
+
TOLERANCE
||
c
<
(
-
1.0
-
TOLERANCE
))
{
int
me
;
MPI_Comm_rank
(
world
,
&
me
);
if
(
screen
)
{
char
str
[
128
];
sprintf
(
str
,
"Dihedral problem: %d %d %d %d %d %d"
,
me
,
update
->
ntimestep
,
atom
->
tag
[
i1
],
atom
->
tag
[
i2
],
atom
->
tag
[
i3
],
atom
->
tag
[
i4
]);
error
->
warning
(
str
);
fprintf
(
screen
,
" 1st atom: %d %g %g %g
\n
"
,
me
,
x
[
i1
][
0
],
x
[
i1
][
1
],
x
[
i1
][
2
]);
fprintf
(
screen
,
" 2nd atom: %d %g %g %g
\n
"
,
me
,
x
[
i2
][
0
],
x
[
i2
][
1
],
x
[
i2
][
2
]);
fprintf
(
screen
,
" 3rd atom: %d %g %g %g
\n
"
,
me
,
x
[
i3
][
0
],
x
[
i3
][
1
],
x
[
i3
][
2
]);
fprintf
(
screen
,
" 4th atom: %d %g %g %g
\n
"
,
me
,
x
[
i4
][
0
],
x
[
i4
][
1
],
x
[
i4
][
2
]);
}
}
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
phi
=
acos
(
c
);
if
(
dx
<
0.0
)
phi
*=
-
1.0
;
si
=
sin
(
phi
);
if
(
fabs
(
si
)
<
SMALLER
)
si
=
SMALLER
;
siinv
=
1.0
/
si
;
p
=
aphi
[
type
]
*
(
1.0
-
c
)
+
bphi
[
type
]
*
(
1.0
+
cos
(
3.0
*
phi
))
+
cphi
[
type
]
*
(
1.0
+
cos
(
phi
+
0.25
*
PI
));
pd
=
-
aphi
[
type
]
+
3.0
*
bphi
[
type
]
*
sin
(
3.0
*
phi
)
*
siinv
+
cphi
[
type
]
*
sin
(
phi
+
0.25
*
PI
)
*
siinv
;
if
(
EFLAG
)
edihedral
=
p
;
a
=
pd
;
c
=
c
*
a
;
s12
=
s12
*
a
;
a11
=
c
*
sb1
*
s1
;
a22
=
-
sb2
*
(
2.0
*
c0
*
s12
-
c
*
(
s1
+
s2
));
a33
=
c
*
sb3
*
s2
;
a12
=
-
r12c1
*
(
c1mag
*
c
*
s1
+
c2mag
*
s12
);
a13
=
-
rb1
*
rb3
*
s12
;
a23
=
r12c2
*
(
c2mag
*
c
*
s2
+
c1mag
*
s12
);
sx2
=
a12
*
vb1x
+
a22
*
vb2x
+
a23
*
vb3x
;
sy2
=
a12
*
vb1y
+
a22
*
vb2y
+
a23
*
vb3y
;
sz2
=
a12
*
vb1z
+
a22
*
vb2z
+
a23
*
vb3z
;
f1
[
0
]
=
a11
*
vb1x
+
a12
*
vb2x
+
a13
*
vb3x
;
f1
[
1
]
=
a11
*
vb1y
+
a12
*
vb2y
+
a13
*
vb3y
;
f1
[
2
]
=
a11
*
vb1z
+
a12
*
vb2z
+
a13
*
vb3z
;
f2
[
0
]
=
-
sx2
-
f1
[
0
];
f2
[
1
]
=
-
sy2
-
f1
[
1
];
f2
[
2
]
=
-
sz2
-
f1
[
2
];
f4
[
0
]
=
a13
*
vb1x
+
a23
*
vb2x
+
a33
*
vb3x
;
f4
[
1
]
=
a13
*
vb1y
+
a23
*
vb2y
+
a33
*
vb3y
;
f4
[
2
]
=
a13
*
vb1z
+
a23
*
vb2z
+
a33
*
vb3z
;
f3
[
0
]
=
sx2
-
f4
[
0
];
f3
[
1
]
=
sy2
-
f4
[
1
];
f3
[
2
]
=
sz2
-
f4
[
2
];
// apply force to each of 4 atoms
if
(
NEWTON_BOND
||
i1
<
nlocal
)
{
f
[
i1
][
0
]
+=
f1
[
0
];
f
[
i1
][
1
]
+=
f1
[
1
];
f
[
i1
][
2
]
+=
f1
[
2
];
}
if
(
NEWTON_BOND
||
i2
<
nlocal
)
{
f
[
i2
][
0
]
+=
f2
[
0
];
f
[
i2
][
1
]
+=
f2
[
1
];
f
[
i2
][
2
]
+=
f2
[
2
];
}
if
(
NEWTON_BOND
||
i3
<
nlocal
)
{
f
[
i3
][
0
]
+=
f3
[
0
];
f
[
i3
][
1
]
+=
f3
[
1
];
f
[
i3
][
2
]
+=
f3
[
2
];
}
if
(
NEWTON_BOND
||
i4
<
nlocal
)
{
f
[
i4
][
0
]
+=
f4
[
0
];
f
[
i4
][
1
]
+=
f4
[
1
];
f
[
i4
][
2
]
+=
f4
[
2
];
}
if
(
EVFLAG
)
ev_tally_thr
(
i1
,
i2
,
i3
,
i4
,
nlocal
,
NEWTON_BOND
,
edihedral
,
f1
,
f3
,
f4
,
vb1x
,
vb1y
,
vb1z
,
vb2x
,
vb2y
,
vb2z
,
vb3x
,
vb3y
,
vb3z
,
tid
);
}
force_reduce_thr
(
atom
->
f
,
nall
,
nthreads
,
tid
);
}
ev_reduce_thr
();
}
/* ---------------------------------------------------------------------- */
void
DihedralHelixOMP
::
allocate
()
{
allocated
=
1
;
int
n
=
atom
->
ndihedraltypes
;
aphi
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:aphi"
);
bphi
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:bphi"
);
cphi
=
(
double
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
double
),
"dihedral:cphi"
);
setflag
=
(
int
*
)
memory
->
smalloc
((
n
+
1
)
*
sizeof
(
int
),
"dihedral:setflag"
);
for
(
int
i
=
1
;
i
<=
n
;
i
++
)
setflag
[
i
]
=
0
;
}
/* ----------------------------------------------------------------------
set coeffs from one line in input script
------------------------------------------------------------------------- */
void
DihedralHelixOMP
::
coeff
(
int
which
,
int
narg
,
char
**
arg
)
{
if
(
which
>
0
)
return
;
if
(
narg
!=
4
)
error
->
all
(
"Incorrect args for dihedral coefficients"
);
if
(
!
allocated
)
allocate
();
int
ilo
,
ihi
;
force
->
bounds
(
arg
[
0
],
atom
->
ndihedraltypes
,
ilo
,
ihi
);
double
aphi_one
=
force
->
numeric
(
arg
[
1
]);
double
bphi_one
=
force
->
numeric
(
arg
[
2
]);
double
cphi_one
=
force
->
numeric
(
arg
[
3
]);
int
count
=
0
;
for
(
int
i
=
ilo
;
i
<=
ihi
;
i
++
)
{
aphi
[
i
]
=
aphi_one
;
bphi
[
i
]
=
bphi_one
;
cphi
[
i
]
=
cphi_one
;
setflag
[
i
]
=
1
;
count
++
;
}
if
(
count
==
0
)
error
->
all
(
"Incorrect args for dihedral coefficients"
);
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void
DihedralHelixOMP
::
write_restart
(
FILE
*
fp
)
{
fwrite
(
&
aphi
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
bphi
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fwrite
(
&
cphi
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void
DihedralHelixOMP
::
read_restart
(
FILE
*
fp
)
{
allocate
();
if
(
comm
->
me
==
0
)
{
fread
(
&
aphi
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
bphi
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
fread
(
&
cphi
[
1
],
sizeof
(
double
),
atom
->
ndihedraltypes
,
fp
);
}
MPI_Bcast
(
&
aphi
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
bphi
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
MPI_Bcast
(
&
cphi
[
1
],
atom
->
ndihedraltypes
,
MPI_DOUBLE
,
0
,
world
);
for
(
int
i
=
1
;
i
<=
atom
->
ndihedraltypes
;
i
++
)
setflag
[
i
]
=
1
;
}
/* ---------------------------------------------------------------------- */
double
DihedralHelixOMP
::
memory_usage
()
{
const
int
n
=
atom
->
ntypes
;
double
bytes
=
DihedralOMP
::
memory_usage
();
bytes
+=
9
*
((
n
+
1
)
*
(
n
+
1
)
*
sizeof
(
double
)
+
(
n
+
1
)
*
sizeof
(
double
*
));
bytes
+=
1
*
((
n
+
1
)
*
(
n
+
1
)
*
sizeof
(
int
)
+
(
n
+
1
)
*
sizeof
(
int
*
));
return
bytes
;
}
Event Timeline
Log In to Comment