Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102272969
region.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Feb 18, 23:51
Size
9 KB
Mime Type
text/x-c
Expires
Thu, Feb 20, 23:51 (2 d)
Engine
blob
Format
Raw Data
Handle
24321137
Attached To
rLAMMPS lammps
region.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "string.h"
#include "region.h"
#include "update.h"
#include "domain.h"
#include "lattice.h"
#include "error.h"
using namespace LAMMPS_NS;
enum{NONE,VELOCITY,WIGGLE,ROTATE,VARIABLE};
/* ---------------------------------------------------------------------- */
Region::Region(LAMMPS *lmp, int narg, char **arg) : Pointers(lmp)
{
int n = strlen(arg[0]) + 1;
id = new char[n];
strcpy(id,arg[0]);
n = strlen(arg[1]) + 1;
style = new char[n];
strcpy(style,arg[1]);
time_origin = update->ntimestep;
}
/* ---------------------------------------------------------------------- */
Region::~Region()
{
delete [] id;
delete [] style;
}
/* ---------------------------------------------------------------------- */
void Region::init()
{
dt = update->dt;
}
/* ----------------------------------------------------------------------
parse optional parameters at end of region input line
------------------------------------------------------------------------- */
void Region::options(int narg, char **arg)
{
if (narg < 0) error->all("Illegal region command");
// option defaults
interior = 1;
scaleflag = 1;
dynamic = NONE;
int iarg = 0;
while (iarg < narg) {
if (strcmp(arg[iarg],"units") == 0) {
if (iarg+2 > narg) error->all("Illegal region command");
if (strcmp(arg[iarg+1],"box") == 0) scaleflag = 0;
else if (strcmp(arg[iarg+1],"lattice") == 0) scaleflag = 1;
else error->all("Illegal region command");
iarg += 2;
} else if (strcmp(arg[iarg],"side") == 0) {
if (iarg+2 > narg) error->all("Illegal region command");
if (strcmp(arg[iarg+1],"in") == 0) interior = 1;
else if (strcmp(arg[iarg+1],"out") == 0) interior = 0;
else error->all("Illegal region command");
iarg += 2;
} else if (strcmp(arg[iarg],"vel") == 0) {
if (iarg+4 > narg) error->all("Illegal region command");
vx = atof(arg[iarg+1]);
vy = atof(arg[iarg+2]);
vz = atof(arg[iarg+3]);
dynamic = VELOCITY;
iarg += 4;
} else if (strcmp(arg[iarg],"wiggle") == 0) {
if (iarg+5 > narg) error->all("Illegal region command");
ax = atof(arg[iarg+1]);
ay = atof(arg[iarg+2]);
az = atof(arg[iarg+3]);
period = atof(arg[iarg+4]);
dynamic = WIGGLE;
iarg += 5;
} else if (strcmp(arg[iarg],"rotate") == 0) {
if (iarg+8 > narg) error->all("Illegal region command");
point[0] = atof(arg[iarg+1]);
point[1] = atof(arg[iarg+2]);
point[2] = atof(arg[iarg+3]);
axis[0] = atof(arg[iarg+4]);
axis[1] = atof(arg[iarg+5]);
axis[2] = atof(arg[iarg+6]);
period = atof(arg[iarg+7]);
dynamic = ROTATE;
iarg += 8;
} else error->all("Illegal region command");
}
// error check
if (dynamic &&
(strcmp(style,"union") == 0 || strcmp(style,"intersect") == 0))
error->all("Region union or intersect cannot be dynamic");
// setup scaling
if (scaleflag && domain->lattice == NULL)
error->all("Use of region with undefined lattice");
if (scaleflag) {
xscale = domain->lattice->xlattice;
yscale = domain->lattice->ylattice;
zscale = domain->lattice->zlattice;
}
else xscale = yscale = zscale = 1.0;
if (dynamic == VELOCITY) {
vx *= xscale;
vy *= yscale;
vz *= zscale;
} else if (dynamic == WIGGLE) {
ax *= xscale;
ay *= yscale;
az *= zscale;
} else if (dynamic == ROTATE) {
point[0] *= xscale;
point[1] *= yscale;
point[2] *= zscale;
}
if (dynamic == WIGGLE || dynamic == ROTATE) {
double PI = 4.0 * atan(1.0);
omega_rotate = 2.0*PI / period;
}
// runit = unit vector along rotation axis
if (dynamic == ROTATE) {
double len = sqrt(axis[0]*axis[0] + axis[1]*axis[1] + axis[2]*axis[2]);
if (len == 0.0)
error->all("Region cannot have 0 length rotation vector");
runit[0] = axis[0]/len;
runit[1] = axis[1]/len;
runit[2] = axis[2]/len;
}
}
/* ----------------------------------------------------------------------
return 1 if region is dynamic, 0 if static
only primitive regions define it here
union/intersect regions have their own dynamic_check()
------------------------------------------------------------------------- */
int Region::dynamic_check()
{
return dynamic;
}
/* ----------------------------------------------------------------------
determine if point x,y,z is a match to region volume
XOR computes 0 if 2 args are the same, 1 if different
note that inside() returns 1 for points on surface of region
thus point on surface of exterior region will not match
if region is dynamic, apply inverse of region change to x
------------------------------------------------------------------------- */
int Region::match(double x, double y, double z)
{
double a[3],b[3],c[3],d[3];
if (dynamic) {
double delta = (update->ntimestep - time_origin) * dt;
if (dynamic == VELOCITY) {
x -= vx*delta;
y -= vy*delta;
z -= vz*delta;
} else if (dynamic == WIGGLE) {
double arg = omega_rotate * delta;
double sine = sin(arg);
x -= ax*sine;
y -= ay*sine;
z -= az*sine;
} else if (dynamic == ROTATE) {
double angle = -omega_rotate*delta;
rotate(x,y,z,angle);
}
}
return !(inside(x,y,z) ^ interior);
}
/* ----------------------------------------------------------------------
generate list of contact points for interior or exterior regions
if region is dynamic:
change x by inverse of region change
change contact point by region change
------------------------------------------------------------------------- */
int Region::surface(double x, double y, double z, double cutoff)
{
int ncontact;
double xnear[3],xhold[3];
if (dynamic) {
double delta = (update->ntimestep - time_origin) * dt;
if (dynamic == VELOCITY) {
x -= vx*delta;
y -= vy*delta;
z -= vz*delta;
} else if (dynamic == WIGGLE) {
double arg = omega_rotate * delta;
double sine = sin(arg);
x -= ax*sine;
y -= ay*sine;
z -= az*sine;
} else if (dynamic == ROTATE) {
xhold[0] = x;
xhold[1] = y;
xhold[2] = z;
double angle = -omega_rotate*delta;
rotate(x,y,z,angle);
}
}
xnear[0] = x;
xnear[1] = y;
xnear[2] = z;
if (interior) ncontact = surface_interior(xnear,cutoff);
else ncontact = surface_exterior(xnear,cutoff);
if (dynamic && ncontact) {
double delta = (update->ntimestep - time_origin) * dt;
if (dynamic == ROTATE) {
for (int i = 0; i < ncontact; i++) {
x -= contact[i].delx;
y -= contact[i].dely;
z -= contact[i].delz;
double angle = omega_rotate*delta;
rotate(x,y,z,angle);
contact[i].delx = xhold[0] - x;
contact[i].dely = xhold[1] - y;
contact[i].delz = xhold[2] - z;
}
}
}
return ncontact;
}
/* ----------------------------------------------------------------------
add a single contact at Nth location in contact array
x = particle position
xp,yp,zp = region surface point
------------------------------------------------------------------------- */
void Region::add_contact(int n, double *x, double xp, double yp, double zp)
{
double delx = x[0] - xp;
double dely = x[1] - yp;
double delz = x[2] - zp;
contact[n].r = sqrt(delx*delx + dely*dely + delz*delz);
contact[n].delx = delx;
contact[n].dely = dely;
contact[n].delz = delz;
}
/* ----------------------------------------------------------------------
rotate x,y,z by angle via right-hand rule around point and runit normal
sign of angle determines whether rotating forward/backward in time
return updated x,y,z
P = point = vector = point of rotation
R = vector = axis of rotation
w = omega of rotation (from period)
X0 = x,y,z = initial coord of atom
R0 = runit = unit vector for R
C = (X0 dot R0) R0 = projection of atom coord onto R
D = X0 - P = vector from P to X0
A = D - C = vector from R line to X0
B = R0 cross A = vector perp to A in plane of rotation
A,B define plane of circular rotation around R line
x,y,z = P + C + A cos(w*dt) + B sin(w*dt)
------------------------------------------------------------------------- */
void Region::rotate(double &x, double &y, double &z, double angle)
{
double a[3],b[3],c[3],d[3],disp[3];
double sine = sin(angle);
double cosine = cos(angle);
double x0dotr = x*runit[0] + y*runit[1] + z*runit[2];
c[0] = x0dotr * runit[0];
c[1] = x0dotr * runit[1];
c[2] = x0dotr * runit[2];
d[0] = x - point[0];
d[1] = y - point[1];
d[2] = z - point[2];
a[0] = d[0] - c[0];
a[1] = d[1] - c[1];
a[2] = d[2] - c[2];
b[0] = runit[1]*a[2] - runit[2]*a[1];
b[1] = runit[2]*a[0] - runit[0]*a[2];
b[2] = runit[0]*a[1] - runit[1]*a[0];
disp[0] = a[0]*cosine + b[0]*sine;
disp[1] = a[1]*cosine + b[1]*sine;
disp[2] = a[2]*cosine + b[2]*sine;
x = point[0] + c[0] + disp[0];
y = point[1] + c[1] + disp[1];
z = point[2] + c[2] + disp[2];
}
Event Timeline
Log In to Comment