<p>Define a computation that calculates the temperature of a group of
atoms, after subtracting out an ramped velocity profile before
computing the kinetic energy. A compute of this style can be used by
any command that computes a temperature,
e.g. <aclass="reference internal"href="thermo_modify.html"><spanclass="doc">thermo_modify</span></a>, <aclass="reference internal"href="fix_temp_rescale.html"><spanclass="doc">fix temp/rescale</span></a>, <aclass="reference internal"href="fix_nh.html"><spanclass="doc">fix npt</span></a>, etc.</p>
<p>The meaning of the arguments for this command which define the
velocity ramp are the same as for the <aclass="reference internal"href="velocity.html"><spanclass="doc">velocity ramp</span></a>
command which was presumably used to impose the velocity.</p>
<p>After the ramp velocity has been subtracted from the specified
dimension for each atom, the temperature is calculated by the formula
KE = dim/2 N k T, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the
simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature.</p>
<p>The <em>units</em> keyword determines the meaning of the distance units used
for coordinates (c1,c2) and velocities (vlo,vhi). A <em>box</em> value
selects standard distance units as defined by the <aclass="reference internal"href="units.html"><spanclass="doc">units</span></a>
command, e.g. Angstroms for units = real or metal. A <em>lattice</em> value
means the distance units are in lattice spacings; e.g. velocity =
lattice spacings / tau. The <aclass="reference internal"href="lattice.html"><spanclass="doc">lattice</span></a> command must have
been previously used to define the lattice spacing.</p>
<p>A kinetic energy tensor, stored as a 6-element vector, is also
calculated by this compute for use in the computation of a pressure
tensor. The formula for the components of the tensor is the same as
the above formula, except that v^2 is replaced by vx*vy for the xy
component, etc. The 6 components of the vector are ordered xx, yy,
zz, xy, xz, yz.</p>
<p>The number of atoms contributing to the temperature is assumed to be
constant for the duration of the run; use the <em>dynamic</em> option of the
<aclass="reference internal"href="compute_modify.html"><spanclass="doc">compute_modify</span></a> command if this is not the case.</p>
<p>The removal of the ramped velocity component by this fix is
essentially computing the temperature after a “bias” has been removed
from the velocity of the atoms. If this compute is used with a fix
command that performs thermostatting then this bias will be subtracted
from each atom, thermostatting of the remaining thermal velocity will
be performed, and the bias will be added back in. Thermostatting
fixes that work in this way include <aclass="reference internal"href="fix_nh.html"><spanclass="doc">fix nvt</span></a>, <aclass="reference internal"href="fix_temp_rescale.html"><spanclass="doc">fix temp/rescale</span></a>, <aclass="reference internal"href="fix_temp_berendsen.html"><spanclass="doc">fix temp/berendsen</span></a>, and <aclass="reference internal"href="fix_langevin.html"><spanclass="doc">fix langevin</span></a>.</p>
<p>This compute subtracts out degrees-of-freedom due to fixes that
constrain molecular motion, such as <aclass="reference internal"href="fix_shake.html"><spanclass="doc">fix shake</span></a> and
<aclass="reference internal"href="fix_rigid.html"><spanclass="doc">fix rigid</span></a>. This means the temperature of groups of
atoms that include these constraints will be computed correctly. If
needed, the subtracted degrees-of-freedom can be altered using the
<em>extra</em> option of the <aclass="reference internal"href="compute_modify.html"><spanclass="doc">compute_modify</span></a> command.</p>
<p>See <aclass="reference internal"href="Section_howto.html#howto-16"><spanclass="std std-ref">this howto section</span></a> of the manual for
a discussion of different ways to compute temperature and perform
thermostatting.</p>
<p><strong>Output info:</strong></p>
<p>This compute calculates a global scalar (the temperature) and a global
vector of length 6 (KE tensor), which can be accessed by indices 1-6.
These values can be used by any command that uses global scalar or
vector values from a compute as input. See <aclass="reference internal"href="Section_howto.html#howto-15"><spanclass="std std-ref">this section</span></a> for an overview of LAMMPS output
options.</p>
<p>The scalar value calculated by this compute is “intensive”. The
vector values are “extensive”.</p>
<p>The scalar value will be in temperature <aclass="reference internal"href="units.html"><spanclass="doc">units</span></a>. The
vector values will be in energy <aclass="reference internal"href="units.html"><spanclass="doc">units</span></a>.</p>
Built with <ahref="http://sphinx-doc.org/">Sphinx</a> using a <ahref="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <ahref="https://readthedocs.org">Read the Docs</a>.