<p>Style <em>table/rx</em> is used in reaction DPD simulations,where the
coarse-grained (CG) particles are composed of <em>m</em> species whose
reaction rate kinetics are determined from a set of <em>n</em> reaction rate
equations through the <aclass="reference internal"href="fix_rx.html"><spanclass="doc">fix rx</span></a> command. The species of
one CG particle can interact with a species in a neighboring CG
particle through a site-site interaction potential model. Style
<em>table/rx</em> creates interpolation tables of length <em>N</em> from pair
potential and force values listed in a file(s) as a function of
distance. The files are read by the <aclass="reference internal"href="pair_coeff.html"><spanclass="doc">pair_coeff</span></a>
command.</p>
<p>The interpolation tables are created by fitting cubic splines to the
file values and interpolating energy and force values at each of <em>N</em>
distances. During a simulation, these tables are used to interpolate
energy and force values as needed. The interpolation is done in one
of 4 styles: <em>lookup</em>, <em>linear</em>, <em>spline</em>, or <em>bitmap</em>.</p>
<p>For the <em>lookup</em> style, the distance between 2 atoms is used to find
the nearest table entry, which is the energy or force.</p>
<p>For the <em>linear</em> style, the pair distance is used to find 2
surrounding table values from which an energy or force is computed by
linear interpolation.</p>
<p>For the <em>spline</em> style, a cubic spline coefficients are computed and
stored at each of the <em>N</em> values in the table. The pair distance is
used to find the appropriate set of coefficients which are used to
evaluate a cubic polynomial which computes the energy or force.</p>
<p>For the <em>bitmap</em> style, the N means to create interpolation tables
that are 2^N in length. The pair distance is used to index into the
table via a fast bit-mapping technique <aclass="reference internal"href="#wolff"><spanclass="std std-ref">(Wolff)</span></a> and a linear
interpolation is performed between adjacent table values.</p>
<p>The following coefficients must be defined for each pair of atoms
types via the <aclass="reference internal"href="pair_coeff.html"><spanclass="doc">pair_coeff</span></a> command as in the examples
above.</p>
<ulclass="simple">
<li>filename</li>
<li>keyword</li>
<li>species1</li>
<li>species2</li>
<li>cutoff (distance units)</li>
</ul>
<p>The filename specifies a file containing tabulated energy and force
values. The keyword specifies a section of the file. The cutoff is
an optional coefficient. If not specified, the outer cutoff in the
table itself (see below) will be used to build an interpolation table
that extend to the largest tabulated distance. If specified, only
file values up to the cutoff are used to create the interpolation
table. The format of this file is described below.</p>
<p>The species tags define the site-site interaction potential between
two species contained within two different particles. The species
tags must either correspond to the species defined in the reaction
kinetics files specified with the <aclass="reference internal"href="fix_rx.html"><spanclass="doc">fix rx</span></a> command or they
must correspond to the tag “1fluid”, signifying interaction with a
product species mixture determined through a one-fluid approximation.
The interaction potential is weighted by the geometric average of the
concentrations of the two species. The coarse-grained potential is
stored before and after the reaction kinetics solver is applied, where
the difference is defined to be the internal chemical energy (uChem).</p>
<hrclass="docutils"/>
<p>Here are some guidelines for using the pair_style table/rx command to
best effect:</p>
<ulclass="simple">
<li>Vary the number of table points; you may need to use more than you think
to get good resolution.</li>
<li>Always use the <aclass="reference internal"href="pair_write.html"><spanclass="doc">pair_write</span></a> command to produce a plot
of what the final interpolated potential looks like. This can show up
interpolation “features” you may not like.</li>
<li>Start with the linear style; it’s the style least likely to have problems.</li>
<li>Use <em>N</em> in the pair_style command equal to the “N” in the tabulation
file, and use the “RSQ” or “BITMAP” parameter, so additional interpolation
is not needed. See discussion below.</li>
<li>Make sure that your tabulated forces and tabulated energies are consistent
(dE/dr = -F) along the entire range of r values.</li>
<li>Use as large an inner cutoff as possible. This avoids fitting splines
to very steep parts of the potential.</li>
</ul>
<hrclass="docutils"/>
<p>The format of a tabulated file is a series of one or more sections,
defined as follows (without the parenthesized comments):</p>
<divclass="highlight-default"><divclass="highlight"><pre><span></span><spanclass="c1"># Morse potential for Fe (one or more comment or blank lines)</span>
Built with <ahref="http://sphinx-doc.org/">Sphinx</a> using a <ahref="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <ahref="https://readthedocs.org">Read the Docs</a>.