<span id="index-0"></span><h1>pair_style tersoff command<a class="headerlink" href="#pair-style-tersoff-command" title="Permalink to this headline">¶</a></h1>
<h1>pair_style tersoff/table/omp command<a class="headerlink" href="#pair-style-tersoff-table-omp-command" title="Permalink to this headline">¶</a></h1>
<div class="section" id="syntax">
<h2>Syntax<a class="headerlink" href="#syntax" title="Permalink to this headline">¶</a></h2>
<p>Tersoff_2 parameters R and S must be converted to the LAMMPS
parameters R and D (R is different in both forms), using the following
relations: R=(R’+S’)/2 and D=(S’-R’)/2, where the primes indicate the
Tersoff_2 parameters.</p>
<p>In the potentials directory, the file SiCGe.tersoff provides the
LAMMPS parameters for Tersoff’s various versions of Si, as well as his
alloy parameters for Si, C, and Ge. This file can be used for pure Si,
(three different versions), pure C, pure Ge, binary SiC, and binary
SiGe. LAMMPS will generate an error if this file is used with any
combination involving C and Ge, since there are no entries for the GeC
interactions (Tersoff did not publish parameters for this
cross-interaction.) Tersoff files are also provided for the SiC alloy
(SiC.tersoff) and the GaN (GaN.tersoff) alloys.</p>
<p>Many thanks to Rutuparna Narulkar, David Farrell, and Xiaowang Zhou
for helping clarify how Tersoff parameters for alloys have been
defined in various papers.</p>
<hr class="docutils" />
<p>Styles with a <em>cuda</em>, <em>gpu</em>, <em>intel</em>, <em>kk</em>, <em>omp</em>, or <em>opt</em> suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in <a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a>
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.</p>
<p>These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL,
KOKKOS, USER-OMP and OPT packages, respectively. They are only
enabled if LAMMPS was built with those packages. See the <a class="reference internal" href="Section_start.html#start-3"><span>Making LAMMPS</span></a> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <a class="reference internal" href="Section_start.html#start-7"><span>-suffix command-line switch</span></a> when you invoke LAMMPS, or you can
use the <a class="reference internal" href="suffix.html"><em>suffix</em></a> command in your input script.</p>
<p>See <a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
<p>For atom type pairs I,J and I != J, where types I and J correspond to
two different element types, mixing is performed by LAMMPS as
described above from values in the potential file.</p>
<p>This pair style does not support the <a class="reference internal" href="pair_modify.html"><em>pair_modify</em></a>
shift, table, and tail options.</p>
<p>This pair style does not write its information to <a class="reference internal" href="restart.html"><em>binary restart files</em></a>, since it is stored in potential files. Thus, you
need to re-specify the pair_style and pair_coeff commands in an input
script that reads a restart file.</p>
<p>This pair style can only be used via the <em>pair</em> keyword of the
<a class="reference internal" href="run_style.html"><em>run_style respa</em></a> command. It does not support the
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.