<span id="index-0"></span><h1>pair_style vashishta command<a class="headerlink" href="#pair-style-vashishta-command" title="Permalink to this headline">¶</a></h1>
specify parameters for all permutations of the two elements
interacting in three-body configurations. Thus for 3 elements, 27
entries would be required, etc.</p>
<p>Depending on the particular version of the Vashishta potential,
the values of these parameters may be keyed to the identities of
zero, one, two, or three elements.
In order to make the input file format unambiguous, general,
and simple to code,
LAMMPS uses a slightly confusing method for specifying parameters.
All parameters are divided into two classes: two-body and three-body.
Two-body and three-body parameters are handled differently,
as described below.
The two-body parameters are H, eta, lambda1, D, lambda4, W, rc, gamma, and r0.
They appear in the above formulae with two subscripts.
The parameters Zi and Zj are also classified as two-body parameters,
even though they only have 1 subscript.
The three-body parameters are B, C, costheta0.
They appear in the above formulae with three subscripts.
Two-body and three-body parameters are handled differently,
as described below.</p>
<p>The first element in each entry is the center atom
in a three-body interaction, while the second and third elements
are two neighbor atoms. Three-body parameters for a central atom I
and two neighbors J and K are taken from the IJK entry.
Note that even though three-body parameters do not depend on the order of
J and K, LAMMPS stores three-body parameters for both IJK and IKJ.
The user must ensure that these values are equal.
Two-body parameters for an atom I interacting with atom J are taken from
the IJJ entry, where the 2nd and 3rd
elements are the same. Thus the two-body parameters
for Si interacting with C come from the SiCC entry. Note that even
though two-body parameters (except possibly gamma and r0 in U3)
do not depend on the order of the two elements,
LAMMPS will get the Si-C value from the SiCC entry
and the C-Si value from the CSiSi entry. The user must ensure
that these values are equal. Two-body parameters appearing
in entries where the 2nd and 3rd elements are different are
stored but never used. It is good practice to enter zero for
these values. Note that the three-body function U3 above
contains the two-body parameters gamma and r0. So U3 for a
central C atom bonded to an Si atom and a second C atom
will take three-body parameters from the CSiC entry, but
two-body parameters from the CCC and CSiSi entries.</p>
<hr class="docutils" />
<p>Styles with a <em>cuda</em>, <em>gpu</em>, <em>intel</em>, <em>kk</em>, <em>omp</em>, or <em>opt</em> suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in <a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a>
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.</p>
<p>These accelerated styles are part of the USER-CUDA, GPU, USER-INTEL,
KOKKOS, USER-OMP and OPT packages, respectively. They are only
enabled if LAMMPS was built with those packages. See the <a class="reference internal" href="Section_start.html#start-3"><span>Making LAMMPS</span></a> section for more info.</p>
<p>You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the <a class="reference internal" href="Section_start.html#start-7"><span>-suffix command-line switch</span></a> when you invoke LAMMPS, or you can
use the <a class="reference internal" href="suffix.html"><em>suffix</em></a> command in your input script.</p>
<p>See <a class="reference internal" href="Section_accelerate.html"><em>Section_accelerate</em></a> of the manual for
more instructions on how to use the accelerated styles effectively.</p>
<p>For atom type pairs I,J and I != J, where types I and J correspond to
two different element types, mixing is performed by LAMMPS as
described above from values in the potential file.</p>
<p>This pair style does not support the <a class="reference internal" href="pair_modify.html"><em>pair_modify</em></a>
shift, table, and tail options.</p>
<p>This pair style does not write its information to <a class="reference internal" href="restart.html"><em>binary restart files</em></a>, since it is stored in potential files. Thus, you
need to re-specify the pair_style and pair_coeff commands in an input
script that reads a restart file.</p>
<p>This pair style can only be used via the <em>pair</em> keyword of the
<a class="reference internal" href="run_style.html"><em>run_style respa</em></a> command. It does not support the
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.