Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92004948
coul_long_ext.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 16, 13:22
Size
4 KB
Mime Type
text/x-c
Expires
Mon, Nov 18, 13:22 (2 d)
Engine
blob
Format
Raw Data
Handle
22362179
Attached To
rLAMMPS lammps
coul_long_ext.cpp
View Options
/***************************************************************************
coul_long_ext.cpp
-------------------
Axel Kohlmeyer (Temple)
Functions for LAMMPS access to coul/long acceleration routines.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin : July 2011
email : a.kohlmeyer@temple.edu
***************************************************************************/
#include <iostream>
#include <cassert>
#include <math.h>
#include "coul_long.h"
using namespace std;
using namespace LAMMPS_AL;
static CoulLong<PRECISION,ACC_PRECISION> CLMF;
// ---------------------------------------------------------------------------
// Allocate memory on host and device and copy constants to device
// ---------------------------------------------------------------------------
int cl_gpu_init(const int inum, const int nall, const int max_nbors,
const int maxspecial, const double cell_size, int &gpu_mode,
FILE *screen, double host_cut_coulsq, double *host_special_coul,
const double qqrd2e, const double g_ewald) {
CLMF.clear();
gpu_mode=CLMF.device->gpu_mode();
double gpu_split=CLMF.device->particle_split();
int first_gpu=CLMF.device->first_device();
int last_gpu=CLMF.device->last_device();
int world_me=CLMF.device->world_me();
int gpu_rank=CLMF.device->gpu_rank();
int procs_per_gpu=CLMF.device->procs_per_gpu();
CLMF.device->init_message(screen,"coul/long",first_gpu,last_gpu);
bool message=false;
if (CLMF.device->replica_me()==0 && screen)
message=true;
if (message) {
fprintf(screen,"Initializing GPU and compiling on process 0...");
fflush(screen);
}
int init_ok=0;
if (world_me==0)
init_ok=CLMF.init(inum, nall, 300, maxspecial, cell_size, gpu_split,
screen, host_cut_coulsq, host_special_coul, qqrd2e,
g_ewald);
CLMF.device->world_barrier();
if (message)
fprintf(screen,"Done.\n");
for (int i=0; i<procs_per_gpu; i++) {
if (message) {
if (last_gpu-first_gpu==0)
fprintf(screen,"Initializing GPU %d on core %d...",first_gpu,i);
else
fprintf(screen,"Initializing GPUs %d-%d on core %d...",first_gpu,
last_gpu,i);
fflush(screen);
}
if (gpu_rank==i && world_me!=0)
init_ok=CLMF.init(inum, nall, 300, maxspecial, cell_size, gpu_split,
screen, host_cut_coulsq, host_special_coul,
qqrd2e, g_ewald);
CLMF.device->gpu_barrier();
if (message)
fprintf(screen,"Done.\n");
}
if (message)
fprintf(screen,"\n");
if (init_ok==0)
CLMF.estimate_gpu_overhead();
return init_ok;
}
void cl_gpu_clear() {
CLMF.clear();
}
int** cl_gpu_compute_n(const int ago, const int inum_full,
const int nall, double **host_x, int *host_type,
double *sublo, double *subhi, int *tag, int **nspecial,
int **special, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
int **ilist, int **jnum, const double cpu_time,
bool &success, double *host_q, double *boxlo,
double *prd) {
return CLMF.compute(ago, inum_full, nall, host_x, host_type, sublo,
subhi, tag, nspecial, special, eflag, vflag, eatom,
vatom, host_start, ilist, jnum, cpu_time, success,
host_q, boxlo, prd);
}
void cl_gpu_compute(const int ago, const int inum_full, const int nall,
double **host_x, int *host_type, int *ilist, int *numj,
int **firstneigh, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
const double cpu_time, bool &success, double *host_q,
const int nlocal, double *boxlo, double *prd) {
CLMF.compute(ago,inum_full,nall,host_x,host_type,ilist,numj,
firstneigh,eflag,vflag,eatom,vatom,host_start,cpu_time,success,
host_q,nlocal,boxlo,prd);
}
double cl_gpu_bytes() {
return CLMF.host_memory_usage();
}
Event Timeline
Log In to Comment