Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91996873
crml_gpu_kernel2.cu
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 16, 11:48
Size
11 KB
Mime Type
text/x-c
Expires
Mon, Nov 18, 11:48 (2 d)
Engine
blob
Format
Raw Data
Handle
22358865
Attached To
rLAMMPS lammps
crml_gpu_kernel2.cu
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Mike Brown (ORNL), brownw@ornl.gov
------------------------------------------------------------------------- */
#ifndef CRML_GPU_KERNEL
#define CRML_GPU_KERNEL
#define MAX_BIO_SHARED_TYPES 128
#ifdef _DOUBLE_DOUBLE
#define numtyp double
#define numtyp2 double2
#define numtyp4 double4
#define acctyp double
#define acctyp4 double4
#endif
#ifdef _SINGLE_DOUBLE
#define numtyp float
#define numtyp2 float2
#define numtyp4 float4
#define acctyp double
#define acctyp4 double4
#endif
#ifndef numtyp
#define numtyp float
#define numtyp2 float2
#define numtyp4 float4
#define acctyp float
#define acctyp4 float4
#endif
#define EWALD_F (numtyp)1.12837917
#define EWALD_P (numtyp)0.3275911
#define A1 (numtyp)0.254829592
#define A2 (numtyp)-0.284496736
#define A3 (numtyp)1.421413741
#define A4 (numtyp)-1.453152027
#define A5 (numtyp)1.061405429
#ifdef NV_KERNEL
#include "geryon/ucl_nv_kernel.h"
texture<float4> pos_tex;
texture<float> q_tex;
#ifdef _DOUBLE_DOUBLE
__inline double4 fetch_pos(const int& i, const double4 *pos)
{
return pos[i];
}
__inline double fetch_q(const int& i, const double *q)
{
return q[i];
}
#else
__inline float4 fetch_pos(const int& i, const float4 *pos)
{
return tex1Dfetch(pos_tex, i);
}
__inline float fetch_q(const int& i, const float *q)
{
return tex1Dfetch(q_tex, i);
}
#endif
#else
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#define GLOBAL_ID_X get_global_id(0)
#define THREAD_ID_X get_local_id(0)
#define BLOCK_ID_X get_group_id(0)
#define BLOCK_SIZE_X get_local_size(0)
#define __syncthreads() barrier(CLK_LOCAL_MEM_FENCE)
#define __inline inline
#define fetch_pos(i,y) x_[i]
#define fetch_q(i,y) q_[i]
#endif
#define SBBITS 30
#define NEIGHMASK 0x3FFFFFFF
__inline int sbmask(int j) { return j >> SBBITS & 3; }
__kernel void kernel_pair(__global numtyp4 *x_, __global numtyp4 *lj1,
const int lj_types,
__global numtyp *sp_lj_in, __global int *dev_nbor,
__global acctyp4 *ans, __global acctyp *engv,
const int eflag, const int vflag, const int inum,
const int nall, const int nbor_pitch,
__global numtyp *q_, const numtyp cut_coulsq,
const numtyp qqrd2e, const numtyp g_ewald,
const numtyp denom_lj, const numtyp cut_bothsq,
const numtyp cut_ljsq, const numtyp cut_lj_innersq) {
// ii indexes the two interacting particles in gi
int ii=GLOBAL_ID_X;
__local numtyp sp_lj[8];
sp_lj[0]=sp_lj_in[0];
sp_lj[1]=sp_lj_in[1];
sp_lj[2]=sp_lj_in[2];
sp_lj[3]=sp_lj_in[3];
sp_lj[4]=sp_lj_in[4];
sp_lj[5]=sp_lj_in[5];
sp_lj[6]=sp_lj_in[6];
sp_lj[7]=sp_lj_in[7];
if (ii<inum) {
acctyp energy=(acctyp)0;
acctyp e_coul=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0;
f.y=(acctyp)0;
f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
__global int *nbor=dev_nbor+ii;
int i=*nbor;
nbor+=nbor_pitch;
int numj=*nbor;
nbor+=nbor_pitch;
__global int *list_end=nbor+mul24(numj,nbor_pitch);
numtyp4 ix=fetch_pos(i,x_); //x_[i];
numtyp qtmp=fetch_q(i,q_);
int itype=ix.w;
for ( ; nbor<list_end; nbor+=nbor_pitch) {
int j=*nbor;
numtyp factor_lj, factor_coul;
factor_lj = sp_lj[sbmask(j)];
factor_coul = (numtyp)1.0-sp_lj[sbmask(j)+4];
j &= NEIGHMASK;
numtyp4 jx=fetch_pos(j,x_); //x_[j];
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
int mtype=itype*lj_types+jtype;
if (rsq<cut_bothsq) {
numtyp r2inv=(numtyp)1.0/rsq;
numtyp forcecoul, force_lj, force, r6inv, prefactor, _erfc, switch1;
if (rsq < cut_ljsq) {
r6inv = r2inv*r2inv*r2inv;
force_lj = factor_lj*r6inv*(lj1[mtype].x*r6inv-lj1[mtype].y);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq);
numtyp switch2 = (numtyp)12.0*rsq*switch1*(rsq-cut_lj_innersq)/
denom_lj;
switch1 *= switch1;
switch1 *= (cut_ljsq+(numtyp)2.0*rsq-(numtyp)3.0*cut_lj_innersq)/
denom_lj;
switch2 *= r6inv*(lj1[mtype].z*r6inv-lj1[mtype].w);
force_lj = force_lj*switch1+switch2;
}
} else
force_lj = (numtyp)0.0;
if (rsq < cut_coulsq) {
numtyp r = sqrt(rsq);
numtyp grij = g_ewald * r;
numtyp expm2 = exp(-grij*grij);
numtyp t = (numtyp)1.0 / ((numtyp)1.0 + EWALD_P*grij);
_erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
prefactor = qqrd2e * qtmp*fetch_q(j,q_)/r;
forcecoul = prefactor * (_erfc + EWALD_F*grij*expm2-factor_coul);
} else {
forcecoul = (numtyp)0.0;
prefactor = (numtyp)0.0;
}
force = (force_lj + forcecoul) * r2inv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
e_coul += prefactor*(_erfc-factor_coul);
if (rsq < cut_ljsq) {
numtyp e=r6inv*(lj1[mtype].z*r6inv-lj1[mtype].w);
if (rsq > cut_lj_innersq)
e *= switch1;
energy+=factor_lj*e;
}
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
// Store answers
__global acctyp *ap1=engv+ii;
if (eflag>0) {
*ap1=energy;
ap1+=inum;
*ap1=e_coul;
ap1+=inum;
}
if (vflag>0) {
for (int i=0; i<6; i++) {
*ap1=virial[i];
ap1+=inum;
}
}
ans[ii]=f;
} // if ii
}
__kernel void kernel_pair_fast(__global numtyp4 *x_, __global numtyp2 *ljd_in,
__global numtyp* sp_lj_in, __global int *dev_nbor,
__global acctyp4 *ans, __global acctyp *engv,
const int eflag, const int vflag, const int inum,
const int nall, const int nbor_pitch,
__global numtyp *q_, const numtyp cut_coulsq,
const numtyp qqrd2e, const numtyp g_ewald,
const numtyp denom_lj, const numtyp cut_bothsq,
const numtyp cut_ljsq,
const numtyp cut_lj_innersq) {
// ii indexes the two interacting particles in gi
int ii=THREAD_ID_X;
__local numtyp2 ljd[MAX_BIO_SHARED_TYPES];
__local numtyp sp_lj[8];
if (ii<8)
sp_lj[ii]=sp_lj_in[ii];
ljd[ii]=ljd_in[ii];
ljd[ii+64]=ljd_in[ii+64];
ii+=mul24((int)BLOCK_ID_X,(int)BLOCK_SIZE_X);
__syncthreads();
if (ii<inum) {
acctyp energy=(acctyp)0;
acctyp e_coul=(acctyp)0;
acctyp4 f;
f.x=(acctyp)0;
f.y=(acctyp)0;
f.z=(acctyp)0;
acctyp virial[6];
for (int i=0; i<6; i++)
virial[i]=(acctyp)0;
__global int *nbor=dev_nbor+ii;
int i=*nbor;
nbor+=nbor_pitch;
int numj=*nbor;
nbor+=nbor_pitch;
__global int *list_end=nbor+mul24(numj,nbor_pitch);
numtyp4 ix=fetch_pos(i,x_); //x_[i];
numtyp qtmp=fetch_q(i,q_);
int itype=ix.w;
for ( ; nbor<list_end; nbor+=nbor_pitch) {
int j=*nbor;
numtyp factor_lj, factor_coul;
factor_lj = sp_lj[sbmask(j)];
factor_coul = (numtyp)1.0-sp_lj[sbmask(j)+4];
j &= NEIGHMASK;
numtyp4 jx=fetch_pos(j,x_); //x_[j];
int jtype=jx.w;
// Compute r12
numtyp delx = ix.x-jx.x;
numtyp dely = ix.y-jx.y;
numtyp delz = ix.z-jx.z;
numtyp rsq = delx*delx+dely*dely+delz*delz;
if (rsq<cut_bothsq) {
numtyp r2inv=(numtyp)1.0/rsq;
numtyp forcecoul, force_lj, force, prefactor, _erfc, switch1;
numtyp lj3, lj4;
if (rsq < cut_ljsq) {
numtyp eps = sqrt(ljd[itype].x*ljd[jtype].x);
numtyp sig6 = (numtyp)0.5 * (ljd[itype].y+ljd[jtype].y);
numtyp sig_r_6 = sig6*sig6*r2inv;
sig_r_6 = sig_r_6*sig_r_6*sig_r_6;
lj4 = (numtyp)4.0*eps*sig_r_6;
lj3 = lj4*sig_r_6;
force_lj = factor_lj*((numtyp)12.0 * lj3 - (numtyp)6.0 * lj4);
if (rsq > cut_lj_innersq) {
switch1 = (cut_ljsq-rsq);
numtyp switch2 = (numtyp)12.0*rsq*switch1*(rsq-cut_lj_innersq)/
denom_lj;
switch1 *= switch1;
switch1 *= (cut_ljsq+(numtyp)2.0*rsq-(numtyp)3.0*cut_lj_innersq)/
denom_lj;
switch2 *= lj3-lj4;
force_lj = force_lj*switch1+switch2;
}
} else
force_lj = (numtyp)0.0;
if (rsq < cut_coulsq) {
numtyp r = sqrt(rsq);
numtyp grij = g_ewald * r;
numtyp expm2 = exp(-grij*grij);
numtyp t = (numtyp)1.0 / ((numtyp)1.0 + EWALD_P*grij);
_erfc = t * (A1+t*(A2+t*(A3+t*(A4+t*A5)))) * expm2;
prefactor = qqrd2e * qtmp*fetch_q(j,q_)/r;
forcecoul = prefactor * (_erfc + EWALD_F*grij*expm2-factor_coul);
} else {
forcecoul = (numtyp)0.0;
prefactor = (numtyp)0.0;
}
force = (force_lj + forcecoul) * r2inv;
f.x+=delx*force;
f.y+=dely*force;
f.z+=delz*force;
if (eflag>0) {
e_coul += prefactor*(_erfc-factor_coul);
if (rsq < cut_ljsq) {
numtyp e=lj3-lj4;
if (rsq > cut_lj_innersq)
e *= switch1;
energy+=factor_lj*e;
}
}
if (vflag>0) {
virial[0] += delx*delx*force;
virial[1] += dely*dely*force;
virial[2] += delz*delz*force;
virial[3] += delx*dely*force;
virial[4] += delx*delz*force;
virial[5] += dely*delz*force;
}
}
} // for nbor
// Store answers
__global acctyp *ap1=engv+ii;
if (eflag>0) {
*ap1=energy;
ap1+=inum;
*ap1=e_coul;
ap1+=inum;
}
if (vflag>0) {
for (int i=0; i<6; i++) {
*ap1=virial[i];
ap1+=inum;
}
}
ans[ii]=f;
} // if ii
}
#endif
Event Timeline
Log In to Comment