Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91641433
lal_re_squared.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 13, 00:24
Size
12 KB
Mime Type
text/x-c++
Expires
Fri, Nov 15, 00:24 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22261038
Attached To
rLAMMPS lammps
lal_re_squared.cpp
View Options
/***************************************************************************
re_squared.cpp
-------------------
W. Michael Brown
Host code for RE-Squared potential acceleration
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin : Fri May 06 2011
email : brownw@ornl.gov
***************************************************************************/
#if defined(USE_OPENCL)
#include "re_squared_cl.h"
#include "re_squared_lj_cl.h"
#elif defined(USE_CUDART)
const char *re_squared=0;
const char *re_squared_lj=0;
#else
#include "re_squared_cubin.h"
#include "re_squared_lj_cubin.h"
#endif
#include "lal_re_squared.h"
#include <cassert>
using namespace LAMMPS_AL;
#define RESquaredT RESquared<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
RESquaredT::RESquared() : BaseEllipsoid<numtyp,acctyp>(),
_allocated(false) {
}
template <class numtyp, class acctyp>
RESquaredT::~RESquared() {
clear();
}
template <class numtyp, class acctyp>
int RESquaredT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom(max_nbors);
}
template <class numtyp, class acctyp>
int RESquaredT::init(const int ntypes, double **host_shape, double **host_well,
double **host_cutsq, double **host_sigma,
double **host_epsilon, int **h_form, double **host_lj1,
double **host_lj2, double **host_lj3, double **host_lj4,
double **host_offset, const double *host_special_lj,
const int nlocal, const int nall, const int max_nbors,
const int maxspecial, const double cell_size,
const double gpu_split, FILE *_screen) {
int success;
success=this->init_base(nlocal,nall,max_nbors,maxspecial,cell_size,gpu_split,
_screen,ntypes,h_form,re_squared,re_squared_lj,
"k_resquared",true);
if (success!=0)
return success;
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
_shared_types=false;
int max_shared_types=this->device->max_shared_types();
if (lj_types<=max_shared_types && this->block_size()>=max_shared_types) {
lj_types=max_shared_types;
_shared_types=true;
}
_lj_types=lj_types;
// Allocate a host write buffer for copying type data
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
UCL_WRITE_ONLY);
for (int i=0; i<lj_types*lj_types; i++)
host_write[i]=0.0;
sigma_epsilon.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack2(ntypes,lj_types,sigma_epsilon,host_write,
host_sigma,host_epsilon);
this->cut_form.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack2(ntypes,lj_types,this->cut_form,host_write,
host_cutsq,h_form);
lj1.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,lj1,host_write,host_lj1,host_lj2,
host_cutsq,h_form);
lj3.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,lj3,host_write,host_lj3,host_lj4,
host_offset);
dev_error.alloc(1,*(this->ucl_device),UCL_WRITE_ONLY);
dev_error.zero();
// Allocate, cast and asynchronous memcpy of constant data
// Copy data for bonded interactions
special_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
host_write[0]=static_cast<numtyp>(host_special_lj[0]);
host_write[1]=static_cast<numtyp>(host_special_lj[1]);
host_write[2]=static_cast<numtyp>(host_special_lj[2]);
host_write[3]=static_cast<numtyp>(host_special_lj[3]);
ucl_copy(special_lj,host_write,4,false);
// Copy shape, well, sigma, epsilon, and cutsq onto GPU
// - cast if necessary
shape.alloc(ntypes,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<ntypes; i++) {
host_write[i*4]=host_shape[i][0];
host_write[i*4+1]=host_shape[i][1];
host_write[i*4+2]=host_shape[i][2];
}
UCL_H_Vec<numtyp4> view4;
view4.view((numtyp4*)host_write.begin(),shape.numel(),*(this->ucl_device));
ucl_copy(shape,view4,false);
well.alloc(ntypes,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<ntypes; i++) {
host_write[i*4]=host_well[i][0];
host_write[i*4+1]=host_well[i][1];
host_write[i*4+2]=host_well[i][2];
}
view4.view((numtyp4*)host_write.begin(),well.numel(),*(this->ucl_device));
ucl_copy(well,view4,false);
_allocated=true;
this->_max_bytes=sigma_epsilon.row_bytes()+this->cut_form.row_bytes()+
lj1.row_bytes()+lj3.row_bytes()+special_lj.row_bytes()+
shape.row_bytes()+well.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void RESquaredT::clear() {
if (!_allocated)
return;
UCL_H_Vec<int> err_flag(1,*(this->ucl_device));
ucl_copy(err_flag,dev_error,false);
if (err_flag[0] == 2)
std::cerr << "BAD MATRIX INVERSION IN FORCE COMPUTATION.\n";
err_flag.clear();
_allocated=false;
dev_error.clear();
lj1.clear();
lj3.clear();
sigma_epsilon.clear();
this->cut_form.clear();
shape.clear();
well.clear();
special_lj.clear();
this->clear_base();
}
template <class numtyp, class acctyp>
double RESquaredT::host_memory_usage() const {
return this->host_memory_usage_base()+sizeof(RESquaredT)+
4*sizeof(numtyp);
}
// ---------------------------------------------------------------------------
// Calculate energies, forces, and torques
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void RESquaredT::loop(const bool _eflag, const bool _vflag) {
const int BX=this->block_size();
int eflag, vflag;
if (_eflag)
eflag=1;
else
eflag=0;
if (_vflag)
vflag=1;
else
vflag=0;
int GX=0, NGX;
int stride=this->nbor->nbor_pitch();
int ainum=this->ans->inum();
if (this->_multiple_forms) {
if (this->_last_ellipse>0) {
// ------------ ELLIPSE_ELLIPSE ---------------
this->time_nbor1.start();
GX=static_cast<int>(ceil(static_cast<double>(this->_last_ellipse)/
(BX/this->_threads_per_atom)));
NGX=static_cast<int>(ceil(static_cast<double>(this->_last_ellipse)/BX));
this->pack_nbors(NGX,BX, 0, this->_last_ellipse,ELLIPSE_ELLIPSE,
ELLIPSE_ELLIPSE,_shared_types,_lj_types);
this->time_nbor1.stop();
this->time_ellipsoid.start();
this->k_ellipsoid.set_size(GX,BX);
this->k_ellipsoid.run(&this->atom->x, &this->atom->quat,
&this->shape, &this->well, &this->special_lj,
&this->sigma_epsilon, &this->_lj_types,
&this->nbor->dev_nbor, &stride,
&this->ans->force,&ainum, &this->ans->engv,
&this->dev_error, &eflag, &vflag,
&this->_last_ellipse, &this->_threads_per_atom);
this->time_ellipsoid.stop();
// ------------ ELLIPSE_SPHERE ---------------
this->time_nbor2.start();
this->pack_nbors(NGX,BX, 0, this->_last_ellipse,ELLIPSE_SPHERE,
ELLIPSE_SPHERE,_shared_types,_lj_types);
this->time_nbor2.stop();
this->time_ellipsoid2.start();
this->k_ellipsoid_sphere.set_size(GX,BX);
this->k_ellipsoid_sphere.run(&this->atom->x, &this->atom->quat,
&this->shape, &this->well, &this->special_lj,
&this->sigma_epsilon, &this->_lj_types,
&this->nbor->dev_nbor, &stride,
&this->ans->force,&ainum,
&this->ans->engv, &this->dev_error,
&eflag, &vflag, &this->_last_ellipse,
&this->_threads_per_atom);
this->time_ellipsoid2.stop();
if (this->_last_ellipse==this->ans->inum()) {
this->time_nbor3.zero();
this->time_ellipsoid3.zero();
this->time_lj.zero();
return;
}
// ------------ SPHERE_ELLIPSE ---------------
this->time_nbor3.start();
GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum()-
this->_last_ellipse)/
(BX/this->_threads_per_atom)));
NGX=static_cast<int>(ceil(static_cast<double>(this->ans->inum()-
this->_last_ellipse)/BX));
this->pack_nbors(NGX,BX,this->_last_ellipse,this->ans->inum(),
SPHERE_ELLIPSE,SPHERE_ELLIPSE,_shared_types,_lj_types);
this->time_nbor3.stop();
this->time_ellipsoid3.start();
this->k_sphere_ellipsoid.set_size(GX,BX);
this->k_sphere_ellipsoid.run(&this->atom->x, &this->atom->quat,
&this->shape, &this->well, &this->special_lj,
&this->sigma_epsilon, &this->_lj_types,
&this->nbor->dev_nbor, &stride,
&this->ans->force, &this->ans->engv,
&this->dev_error, &eflag, &vflag,
&this->_last_ellipse, &ainum,
&this->_threads_per_atom);
this->time_ellipsoid3.stop();
} else {
GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum()-
this->_last_ellipse)/
(BX/this->_threads_per_atom)));
this->ans->force.zero();
this->ans->engv.zero();
this->time_nbor1.zero();
this->time_ellipsoid.zero();
this->time_nbor2.zero();
this->time_ellipsoid2.zero();
this->time_nbor3.zero();
this->time_ellipsoid3.zero();
}
// ------------ LJ ---------------
this->time_lj.start();
if (this->_last_ellipse<this->ans->inum()) {
if (this->_shared_types) {
this->k_lj_fast.set_size(GX,BX);
this->k_lj_fast.run(&this->atom->x, &this->lj1, &this->lj3,
&this->special_lj, &stride,
&this->nbor->dev_packed, &this->ans->force,
&this->ans->engv, &this->dev_error,
&eflag, &vflag, &this->_last_ellipse, &ainum,
&this->_threads_per_atom);
} else {
this->k_lj.set_size(GX,BX);
this->k_lj.run(&this->atom->x, &this->lj1, &this->lj3,
&this->_lj_types, &this->special_lj, &stride,
&this->nbor->dev_packed, &this->ans->force,
&this->ans->engv, &this->dev_error, &eflag, &vflag,
&this->_last_ellipse, &ainum, &this->_threads_per_atom);
}
}
this->time_lj.stop();
} else {
GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
NGX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/BX));
this->time_nbor1.start();
this->pack_nbors(NGX, BX, 0, this->ans->inum(),SPHERE_SPHERE,
ELLIPSE_ELLIPSE,_shared_types,_lj_types);
this->time_nbor1.stop();
this->time_ellipsoid.start();
this->k_ellipsoid.set_size(GX,BX);
this->k_ellipsoid.run(&this->atom->x, &this->atom->quat,
&this->shape, &this->well, &this->special_lj,
&this->sigma_epsilon, &this->_lj_types,
&this->nbor->dev_nbor, &stride, &this->ans->force,
&ainum, &this->ans->engv, &this->dev_error,
&eflag, &vflag, &ainum, &this->_threads_per_atom);
this->time_ellipsoid.stop();
}
}
template class RESquared<PRECISION,ACC_PRECISION>;
Event Timeline
Log In to Comment