Page MenuHomec4science

TestTaskPolicy.hpp
No OneTemporary

File Metadata

Created
Thu, Aug 15, 15:11

TestTaskPolicy.hpp

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#ifndef KOKKOS_UNITTEST_TASKPOLICY_HPP
#define KOKKOS_UNITTEST_TASKPOLICY_HPP
#include <stdio.h>
#include <iostream>
#include <cmath>
#include <Kokkos_TaskPolicy.hpp>
#if defined( KOKKOS_ENABLE_TASKPOLICY )
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
namespace TestTaskPolicy {
namespace {
long eval_fib( long n )
{
constexpr long mask = 0x03 ;
long fib[4] = { 0 , 1 , 1 , 2 };
for ( long i = 2 ; i <= n ; ++i ) {
fib[ i & mask ] = fib[ ( i - 1 ) & mask ] + fib[ ( i - 2 ) & mask ];
}
return fib[ n & mask ];
}
}
template< typename Space >
struct TestFib
{
typedef Kokkos::TaskPolicy<Space> policy_type ;
typedef Kokkos::Future<long,Space> future_type ;
typedef long value_type ;
policy_type policy ;
future_type fib_m1 ;
future_type fib_m2 ;
const value_type n ;
KOKKOS_INLINE_FUNCTION
TestFib( const policy_type & arg_policy , const value_type arg_n )
: policy(arg_policy)
, fib_m1() , fib_m2()
, n( arg_n )
{}
KOKKOS_INLINE_FUNCTION
void operator()( typename policy_type::member_type & , value_type & result )
{
#if 0
printf( "\nTestFib(%ld) %d %d\n"
, n
, int( ! fib_m1.is_null() )
, int( ! fib_m2.is_null() )
);
#endif
if ( n < 2 ) {
result = n ;
}
else if ( ! fib_m2.is_null() && ! fib_m1.is_null() ) {
result = fib_m1.get() + fib_m2.get();
}
else {
// Spawn new children and respawn myself to sum their results:
// Spawn lower value at higher priority as it has a shorter
// path to completion.
fib_m2 = policy.task_spawn( TestFib(policy,n-2)
, Kokkos::TaskSingle
, Kokkos::TaskHighPriority );
fib_m1 = policy.task_spawn( TestFib(policy,n-1)
, Kokkos::TaskSingle );
Kokkos::Future<Space> dep[] = { fib_m1 , fib_m2 };
Kokkos::Future<Space> fib_all = policy.when_all( 2 , dep );
if ( ! fib_m2.is_null() && ! fib_m1.is_null() && ! fib_all.is_null() ) {
// High priority to retire this branch
policy.respawn( this , Kokkos::TaskHighPriority , fib_all );
}
else {
#if 0
printf( "TestFib(%ld) insufficient memory alloc_capacity(%d) task_max(%d) task_accum(%ld)\n"
, n
, policy.allocation_capacity()
, policy.allocated_task_count_max()
, policy.allocated_task_count_accum()
);
#endif
Kokkos::abort("TestFib insufficient memory");
}
}
}
static void run( int i , size_t MemoryCapacity = 16000 )
{
typedef typename policy_type::memory_space memory_space ;
enum { Log2_SuperBlockSize = 12 };
policy_type root_policy( memory_space() , MemoryCapacity , Log2_SuperBlockSize );
future_type f = root_policy.host_spawn( TestFib(root_policy,i) , Kokkos::TaskSingle );
Kokkos::wait( root_policy );
ASSERT_EQ( eval_fib(i) , f.get() );
#if 0
fprintf( stdout , "\nTestFib::run(%d) spawn_size(%d) when_all_size(%d) alloc_capacity(%d) task_max(%d) task_accum(%ld)\n"
, i
, int(root_policy.template spawn_allocation_size<TestFib>())
, int(root_policy.when_all_allocation_size(2))
, root_policy.allocation_capacity()
, root_policy.allocated_task_count_max()
, root_policy.allocated_task_count_accum()
);
fflush( stdout );
#endif
}
};
} // namespace TestTaskPolicy
//----------------------------------------------------------------------------
namespace TestTaskPolicy {
template< class Space >
struct TestTaskDependence {
typedef Kokkos::TaskPolicy<Space> policy_type ;
typedef Kokkos::Future<Space> future_type ;
typedef Kokkos::View<long,Space> accum_type ;
typedef void value_type ;
policy_type m_policy ;
accum_type m_accum ;
long m_count ;
KOKKOS_INLINE_FUNCTION
TestTaskDependence( long n
, const policy_type & arg_policy
, const accum_type & arg_accum )
: m_policy( arg_policy )
, m_accum( arg_accum )
, m_count( n )
{}
KOKKOS_INLINE_FUNCTION
void operator()( typename policy_type::member_type & )
{
enum { CHUNK = 8 };
const int n = CHUNK < m_count ? CHUNK : m_count ;
if ( 1 < m_count ) {
future_type f[ CHUNK ] ;
const int inc = ( m_count + n - 1 ) / n ;
for ( int i = 0 ; i < n ; ++i ) {
long begin = i * inc ;
long count = begin + inc < m_count ? inc : m_count - begin ;
f[i] = m_policy.task_spawn( TestTaskDependence(count,m_policy,m_accum) , Kokkos::TaskSingle );
}
m_count = 0 ;
m_policy.respawn( this , m_policy.when_all( n , f ) );
}
else if ( 1 == m_count ) {
Kokkos::atomic_increment( & m_accum() );
}
}
static void run( int n )
{
typedef typename policy_type::memory_space memory_space ;
// enum { MemoryCapacity = 4000 }; // Triggers infinite loop in memory pool
enum { MemoryCapacity = 16000 };
enum { Log2_SuperBlockSize = 12 };
policy_type policy( memory_space() , MemoryCapacity , Log2_SuperBlockSize );
accum_type accum("accum");
typename accum_type::HostMirror host_accum =
Kokkos::create_mirror_view( accum );
policy.host_spawn( TestTaskDependence(n,policy,accum) , Kokkos::TaskSingle );
Kokkos::wait( policy );
Kokkos::deep_copy( host_accum , accum );
ASSERT_EQ( host_accum() , n );
}
};
} // namespace TestTaskPolicy
//----------------------------------------------------------------------------
namespace TestTaskPolicy {
template< class ExecSpace >
struct TestTaskTeam {
//enum { SPAN = 8 };
enum { SPAN = 33 };
//enum { SPAN = 1 };
typedef void value_type ;
typedef Kokkos::TaskPolicy<ExecSpace> policy_type ;
typedef Kokkos::Future<ExecSpace> future_type ;
typedef Kokkos::View<long*,ExecSpace> view_type ;
policy_type policy ;
future_type future ;
view_type parfor_result ;
view_type parreduce_check ;
view_type parscan_result ;
view_type parscan_check ;
const long nvalue ;
KOKKOS_INLINE_FUNCTION
TestTaskTeam( const policy_type & arg_policy
, const view_type & arg_parfor_result
, const view_type & arg_parreduce_check
, const view_type & arg_parscan_result
, const view_type & arg_parscan_check
, const long arg_nvalue )
: policy(arg_policy)
, future()
, parfor_result( arg_parfor_result )
, parreduce_check( arg_parreduce_check )
, parscan_result( arg_parscan_result )
, parscan_check( arg_parscan_check )
, nvalue( arg_nvalue )
{}
KOKKOS_INLINE_FUNCTION
void operator()( typename policy_type::member_type & member )
{
const long end = nvalue + 1 ;
const long begin = 0 < end - SPAN ? end - SPAN : 0 ;
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
future = policy.task_spawn
( TestTaskTeam( policy ,
parfor_result ,
parreduce_check,
parscan_result,
parscan_check,
begin - 1 )
, Kokkos::TaskTeam );
assert( ! future.is_null() );
policy.respawn( this , future );
}
return ;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { parfor_result[i] = i ; }
);
// test parallel_reduce without join
long tot = 0;
long expected = (begin+end-1)*(end-begin)*0.5;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i, long &res) { res += parfor_result[i]; }
, tot);
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { parreduce_check[i] = expected-tot ; }
);
// test parallel_reduce with join
tot = 0;
Kokkos::parallel_reduce( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i, long &res) { res += parfor_result[i]; }
, [&]( long& val1, const long& val2) { val1 += val2; }
, tot);
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { parreduce_check[i] += expected-tot ; }
);
#if 0
// test parallel_scan
// Exclusive scan
Kokkos::parallel_scan<long>( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i, long &val , const bool final ) {
if ( final ) { parscan_result[i] = val; }
val += i;
}
);
if ( member.team_rank() == 0 ) {
for ( long i = begin ; i < end ; ++i ) {
parscan_check[i] = (i*(i-1)-begin*(begin-1))*0.5-parscan_result[i];
}
}
// Inclusive scan
Kokkos::parallel_scan<long>( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i, long &val , const bool final ) {
val += i;
if ( final ) { parscan_result[i] = val; }
}
);
if ( member.team_rank() == 0 ) {
for ( long i = begin ; i < end ; ++i ) {
parscan_check[i] += (i*(i+1)-begin*(begin-1))*0.5-parscan_result[i];
}
}
#endif
}
static void run( long n )
{
// const unsigned memory_capacity = 10000 ; // causes memory pool infinite loop
// const unsigned memory_capacity = 100000 ; // fails with SPAN=1 for serial and OMP
const unsigned memory_capacity = 400000 ;
policy_type root_policy( typename policy_type::memory_space()
, memory_capacity );
view_type root_parfor_result("parfor_result",n+1);
view_type root_parreduce_check("parreduce_check",n+1);
view_type root_parscan_result("parscan_result",n+1);
view_type root_parscan_check("parscan_check",n+1);
typename view_type::HostMirror
host_parfor_result = Kokkos::create_mirror_view( root_parfor_result );
typename view_type::HostMirror
host_parreduce_check = Kokkos::create_mirror_view( root_parreduce_check );
typename view_type::HostMirror
host_parscan_result = Kokkos::create_mirror_view( root_parscan_result );
typename view_type::HostMirror
host_parscan_check = Kokkos::create_mirror_view( root_parscan_check );
future_type f = root_policy.host_spawn(
TestTaskTeam( root_policy ,
root_parfor_result ,
root_parreduce_check ,
root_parscan_result,
root_parscan_check,
n ) ,
Kokkos::TaskTeam );
Kokkos::wait( root_policy );
Kokkos::deep_copy( host_parfor_result , root_parfor_result );
Kokkos::deep_copy( host_parreduce_check , root_parreduce_check );
Kokkos::deep_copy( host_parscan_result , root_parscan_result );
Kokkos::deep_copy( host_parscan_check , root_parscan_check );
for ( long i = 0 ; i <= n ; ++i ) {
const long answer = i ;
if ( host_parfor_result(i) != answer ) {
std::cerr << "TestTaskTeam::run ERROR parallel_for result(" << i << ") = "
<< host_parfor_result(i) << " != " << answer << std::endl ;
}
if ( host_parreduce_check(i) != 0 ) {
std::cerr << "TestTaskTeam::run ERROR parallel_reduce check(" << i << ") = "
<< host_parreduce_check(i) << " != 0" << std::endl ;
} //TODO
if ( host_parscan_check(i) != 0 ) {
std::cerr << "TestTaskTeam::run ERROR parallel_scan check(" << i << ") = "
<< host_parscan_check(i) << " != 0" << std::endl ;
}
}
}
};
template< class ExecSpace >
struct TestTaskTeamValue {
enum { SPAN = 8 };
typedef long value_type ;
typedef Kokkos::TaskPolicy<ExecSpace> policy_type ;
typedef Kokkos::Future<value_type,ExecSpace> future_type ;
typedef Kokkos::View<long*,ExecSpace> view_type ;
policy_type policy ;
future_type future ;
view_type result ;
const long nvalue ;
KOKKOS_INLINE_FUNCTION
TestTaskTeamValue( const policy_type & arg_policy
, const view_type & arg_result
, const long arg_nvalue )
: policy(arg_policy)
, future()
, result( arg_result )
, nvalue( arg_nvalue )
{}
KOKKOS_INLINE_FUNCTION
void operator()( typename policy_type::member_type const & member
, value_type & final )
{
const long end = nvalue + 1 ;
const long begin = 0 < end - SPAN ? end - SPAN : 0 ;
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
future = policy.task_spawn
( TestTaskTeamValue( policy , result , begin - 1 )
, Kokkos::TaskTeam );
assert( ! future.is_null() );
policy.respawn( this , future );
}
return ;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { result[i] = i + 1 ; }
);
if ( member.team_rank() == 0 ) {
final = result[nvalue] ;
}
Kokkos::memory_fence();
}
static void run( long n )
{
// const unsigned memory_capacity = 10000 ; // causes memory pool infinite loop
const unsigned memory_capacity = 100000 ;
policy_type root_policy( typename policy_type::memory_space()
, memory_capacity );
view_type root_result("result",n+1);
typename view_type::HostMirror
host_result = Kokkos::create_mirror_view( root_result );
future_type fv = root_policy.host_spawn
( TestTaskTeamValue( root_policy, root_result, n ) , Kokkos::TaskTeam );
Kokkos::wait( root_policy );
Kokkos::deep_copy( host_result , root_result );
if ( fv.get() != n + 1 ) {
std::cerr << "TestTaskTeamValue ERROR future = "
<< fv.get() << " != " << n + 1 << std::endl ;
}
for ( long i = 0 ; i <= n ; ++i ) {
const long answer = i + 1 ;
if ( host_result(i) != answer ) {
std::cerr << "TestTaskTeamValue ERROR result(" << i << ") = "
<< host_result(i) << " != " << answer << std::endl ;
}
}
}
};
} // namespace TestTaskPolicy
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
namespace TestTaskPolicy {
template< class ExecSpace >
struct FibChild {
typedef long value_type ;
Kokkos::Experimental::TaskPolicy<ExecSpace> policy ;
Kokkos::Experimental::Future<long,ExecSpace> fib_1 ;
Kokkos::Experimental::Future<long,ExecSpace> fib_2 ;
const value_type n ;
int has_nested ;
KOKKOS_INLINE_FUNCTION
FibChild( const Kokkos::Experimental::TaskPolicy<ExecSpace> & arg_policy
, const value_type arg_n )
: policy(arg_policy)
, fib_1() , fib_2()
, n( arg_n ), has_nested(0) {}
KOKKOS_INLINE_FUNCTION
void apply( value_type & result )
{
typedef Kokkos::Experimental::Future<long,ExecSpace> future_type ;
if ( n < 2 ) {
has_nested = -1 ;
result = n ;
}
else {
if ( has_nested == 0 ) {
// Spawn new children and respawn myself to sum their results:
// Spawn lower value at higher priority as it has a shorter
// path to completion.
if ( fib_2.is_null() ) {
fib_2 = policy.task_create( FibChild(policy,n-2) );
}
if ( ! fib_2.is_null() && fib_1.is_null() ) {
fib_1 = policy.task_create( FibChild(policy,n-1) );
}
if ( ! fib_1.is_null() ) {
has_nested = 2 ;
policy.spawn( fib_2 , true /* high priority */ );
policy.spawn( fib_1 );
policy.add_dependence( this , fib_1 );
policy.add_dependence( this , fib_2 );
policy.respawn( this );
}
else {
// Release task memory before spawning the task,
// after spawning memory cannot be released.
fib_2 = future_type();
// Respawn when more memory is available
policy.respawn_needing_memory( this );
}
}
else if ( has_nested == 2 ) {
has_nested = -1 ;
result = fib_1.get() + fib_2.get();
if ( false ) {
printf("FibChild %ld = fib(%ld), task_count(%d)\n"
, long(n), long(result), policy.allocated_task_count());
}
}
else {
printf("FibChild(%ld) execution error\n",(long)n);
Kokkos::abort("FibChild execution error");
}
}
}
};
template< class ExecSpace >
struct FibChild2 {
typedef long value_type ;
Kokkos::Experimental::TaskPolicy<ExecSpace> policy ;
Kokkos::Experimental::Future<long,ExecSpace> fib_a ;
Kokkos::Experimental::Future<long,ExecSpace> fib_b ;
const value_type n ;
int has_nested ;
KOKKOS_INLINE_FUNCTION
FibChild2( const Kokkos::Experimental::TaskPolicy<ExecSpace> & arg_policy
, const value_type arg_n )
: policy(arg_policy)
, n( arg_n ), has_nested(0) {}
KOKKOS_INLINE_FUNCTION
void apply( value_type & result )
{
if ( 0 == has_nested ) {
if ( n < 2 ) {
has_nested = -1 ;
result = n ;
}
else if ( n < 4 ) {
// Spawn new children and respawn myself to sum their results:
// result = Fib(n-1) + Fib(n-2)
has_nested = 2 ;
// Spawn lower value at higher priority as it has a shorter
// path to completion.
policy.clear_dependence( this );
fib_a = policy.spawn( policy.task_create( FibChild2(policy,n-1) ) );
fib_b = policy.spawn( policy.task_create( FibChild2(policy,n-2) ) , true );
policy.add_dependence( this , fib_a );
policy.add_dependence( this , fib_b );
policy.respawn( this );
}
else {
// Spawn new children and respawn myself to sum their results:
// result = Fib(n-1) + Fib(n-2)
// result = ( Fib(n-2) + Fib(n-3) ) + ( Fib(n-3) + Fib(n-4) )
// result = ( ( Fib(n-3) + Fib(n-4) ) + Fib(n-3) ) + ( Fib(n-3) + Fib(n-4) )
// result = 3 * Fib(n-3) + 2 * Fib(n-4)
has_nested = 4 ;
// Spawn lower value at higher priority as it has a shorter
// path to completion.
policy.clear_dependence( this );
fib_a = policy.spawn( policy.task_create( FibChild2(policy,n-3) ) );
fib_b = policy.spawn( policy.task_create( FibChild2(policy,n-4) ) , true );
policy.add_dependence( this , fib_a );
policy.add_dependence( this , fib_b );
policy.respawn( this );
}
}
else if ( 2 == has_nested || 4 == has_nested ) {
result = ( has_nested == 2 ) ? fib_a.get() + fib_b.get()
: 3 * fib_a.get() + 2 * fib_b.get() ;
has_nested = -1 ;
}
else {
printf("FibChild2(%ld) execution error\n",(long)n);
Kokkos::abort("FibChild2 execution error");
}
}
};
template< class ExecSpace >
void test_fib( long n , const unsigned task_max_count = 4096 )
{
const unsigned task_max_size = 256 ;
const unsigned task_dependence = 4 ;
Kokkos::Experimental::TaskPolicy<ExecSpace>
policy( task_max_count
, task_max_size
, task_dependence );
Kokkos::Experimental::Future<long,ExecSpace> f =
policy.spawn( policy.proc_create( FibChild<ExecSpace>(policy,n) ) );
Kokkos::Experimental::wait( policy );
if ( f.get() != eval_fib(n) ) {
std::cout << "Fib(" << n << ") = " << f.get();
std::cout << " != " << eval_fib(n);
std::cout << std::endl ;
}
}
template< class ExecSpace >
void test_fib2( long n , const unsigned task_max_count = 1024 )
{
const unsigned task_max_size = 256 ;
const unsigned task_dependence = 4 ;
Kokkos::Experimental::TaskPolicy<ExecSpace>
policy( task_max_count
, task_max_size
, task_dependence );
Kokkos::Experimental::Future<long,ExecSpace> f =
policy.spawn( policy.proc_create( FibChild2<ExecSpace>(policy,n) ) );
Kokkos::Experimental::wait( policy );
if ( f.get() != eval_fib(n) ) {
std::cout << "Fib2(" << n << ") = " << f.get();
std::cout << " != " << eval_fib(n);
std::cout << std::endl ;
}
}
//----------------------------------------------------------------------------
template< class ExecSpace >
struct Norm2 {
typedef double value_type ;
const double * const m_x ;
Norm2( const double * x ) : m_x(x) {}
inline
void init( double & val ) const { val = 0 ; }
KOKKOS_INLINE_FUNCTION
void operator()( int i , double & val ) const { val += m_x[i] * m_x[i] ; }
void apply( double & dst ) const { dst = std::sqrt( dst ); }
};
template< class ExecSpace >
void test_norm2( const int n )
{
const unsigned task_max_count = 1024 ;
const unsigned task_max_size = 256 ;
const unsigned task_dependence = 4 ;
Kokkos::Experimental::TaskPolicy<ExecSpace>
policy( task_max_count
, task_max_size
, task_dependence );
double * const x = new double[n];
for ( int i = 0 ; i < n ; ++i ) x[i] = 1 ;
Kokkos::RangePolicy<ExecSpace> r(0,n);
Kokkos::Experimental::Future<double,ExecSpace> f =
Kokkos::Experimental::spawn_reduce( policy , r , Norm2<ExecSpace>(x) );
Kokkos::Experimental::wait( policy );
#if defined(PRINT)
std::cout << "Norm2: " << f.get() << std::endl ;
#endif
delete[] x ;
}
//----------------------------------------------------------------------------
template< class Space >
struct TaskDep {
typedef int value_type ;
typedef Kokkos::Experimental::TaskPolicy< Space > policy_type ;
const policy_type policy ;
const int input ;
TaskDep( const policy_type & arg_p , const int arg_i )
: policy( arg_p ), input( arg_i ) {}
KOKKOS_INLINE_FUNCTION
void apply( int & val )
{
val = input ;
const int num = policy.get_dependence( this );
for ( int i = 0 ; i < num ; ++i ) {
Kokkos::Experimental::Future<int,Space> f = policy.get_dependence( this , i );
val += f.get();
}
}
};
template< class Space >
void test_task_dep( const int n )
{
enum { NTEST = 64 };
const unsigned task_max_count = 1024 ;
const unsigned task_max_size = 64 ;
const unsigned task_dependence = 4 ;
Kokkos::Experimental::TaskPolicy<Space>
policy( task_max_count
, task_max_size
, task_dependence );
Kokkos::Experimental::Future<int,Space> f[ NTEST ];
for ( int i = 0 ; i < NTEST ; ++i ) {
// Create task in the "constructing" state with capacity for 'n+1' dependences
f[i] = policy.proc_create( TaskDep<Space>(policy,0) , n + 1 );
if ( f[i].get_task_state() != Kokkos::Experimental::TASK_STATE_CONSTRUCTING ) {
Kokkos::Impl::throw_runtime_exception("get_task_state() != Kokkos::Experimental::TASK_STATE_CONSTRUCTING");
}
// Only use 'n' dependences
for ( int j = 0 ; j < n ; ++j ) {
Kokkos::Experimental::Future<int,Space> nested =
policy.proc_create( TaskDep<Space>(policy,j+1) );
policy.spawn( nested );
// Add dependence to a "constructing" task
policy.add_dependence( f[i] , nested );
}
// Spawn task from the "constructing" to the "waiting" state
policy.spawn( f[i] );
}
const int answer = n % 2 ? n * ( ( n + 1 ) / 2 ) : ( n / 2 ) * ( n + 1 );
Kokkos::Experimental::wait( policy );
int error = 0 ;
for ( int i = 0 ; i < NTEST ; ++i ) {
if ( f[i].get_task_state() != Kokkos::Experimental::TASK_STATE_COMPLETE ) {
Kokkos::Impl::throw_runtime_exception("get_task_state() != Kokkos::Experimental::TASK_STATE_COMPLETE");
}
if ( answer != f[i].get() && 0 == error ) {
std::cout << "test_task_dep(" << n << ") ERROR at[" << i << "]"
<< " answer(" << answer << ") != result(" << f[i].get() << ")" << std::endl ;
}
}
}
//----------------------------------------------------------------------------
template< class ExecSpace >
struct TaskTeam {
enum { SPAN = 8 };
typedef void value_type ;
typedef Kokkos::Experimental::TaskPolicy<ExecSpace> policy_type ;
typedef Kokkos::Experimental::Future<void,ExecSpace> future_type ;
typedef Kokkos::View<long*,ExecSpace> view_type ;
policy_type policy ;
future_type future ;
view_type result ;
const long nvalue ;
KOKKOS_INLINE_FUNCTION
TaskTeam( const policy_type & arg_policy
, const view_type & arg_result
, const long arg_nvalue )
: policy(arg_policy)
, future()
, result( arg_result )
, nvalue( arg_nvalue )
{}
KOKKOS_INLINE_FUNCTION
void apply( const typename policy_type::member_type & member )
{
const long end = nvalue + 1 ;
const long begin = 0 < end - SPAN ? end - SPAN : 0 ;
if ( 0 < begin && future.get_task_state() == Kokkos::Experimental::TASK_STATE_NULL ) {
if ( member.team_rank() == 0 ) {
future = policy.spawn( policy.task_create_team( TaskTeam( policy , result , begin - 1 ) ) );
policy.clear_dependence( this );
policy.add_dependence( this , future );
policy.respawn( this );
}
return ;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { result[i] = i + 1 ; }
);
}
};
template< class ExecSpace >
struct TaskTeamValue {
enum { SPAN = 8 };
typedef long value_type ;
typedef Kokkos::Experimental::TaskPolicy<ExecSpace> policy_type ;
typedef Kokkos::Experimental::Future<value_type,ExecSpace> future_type ;
typedef Kokkos::View<long*,ExecSpace> view_type ;
policy_type policy ;
future_type future ;
view_type result ;
const long nvalue ;
KOKKOS_INLINE_FUNCTION
TaskTeamValue( const policy_type & arg_policy
, const view_type & arg_result
, const long arg_nvalue )
: policy(arg_policy)
, future()
, result( arg_result )
, nvalue( arg_nvalue )
{}
KOKKOS_INLINE_FUNCTION
void apply( const typename policy_type::member_type & member , value_type & final )
{
const long end = nvalue + 1 ;
const long begin = 0 < end - SPAN ? end - SPAN : 0 ;
if ( 0 < begin && future.is_null() ) {
if ( member.team_rank() == 0 ) {
future = policy.task_create_team( TaskTeamValue( policy , result , begin - 1 ) );
policy.spawn( future );
policy.add_dependence( this , future );
policy.respawn( this );
}
return ;
}
Kokkos::parallel_for( Kokkos::TeamThreadRange(member,begin,end)
, [&]( int i ) { result[i] = i + 1 ; }
);
if ( member.team_rank() == 0 ) {
final = result[nvalue] ;
}
Kokkos::memory_fence();
}
};
template< class ExecSpace >
void test_task_team( long n )
{
typedef TaskTeam< ExecSpace > task_type ;
typedef TaskTeamValue< ExecSpace > task_value_type ;
typedef typename task_type::view_type view_type ;
typedef typename task_type::policy_type policy_type ;
typedef typename task_type::future_type future_type ;
typedef typename task_value_type::future_type future_value_type ;
const unsigned task_max_count = 1024 ;
const unsigned task_max_size = 256 ;
const unsigned task_dependence = 4 ;
policy_type
policy( task_max_count
, task_max_size
, task_dependence );
view_type result("result",n+1);
typename view_type::HostMirror
host_result = Kokkos::create_mirror_view( result );
future_type f = policy.proc_create_team( task_type( policy , result , n ) );
ASSERT_FALSE( f.is_null() );
policy.spawn( f );
Kokkos::Experimental::wait( policy );
Kokkos::deep_copy( host_result , result );
for ( long i = 0 ; i <= n ; ++i ) {
const long answer = i + 1 ;
if ( host_result(i) != answer ) {
std::cerr << "test_task_team void ERROR result(" << i << ") = "
<< host_result(i) << " != " << answer << std::endl ;
}
}
future_value_type fv = policy.proc_create_team( task_value_type( policy , result , n ) );
ASSERT_FALSE( fv.is_null() );
policy.spawn( fv );
Kokkos::Experimental::wait( policy );
Kokkos::deep_copy( host_result , result );
if ( fv.get() != n + 1 ) {
std::cerr << "test_task_team value ERROR future = "
<< fv.get() << " != " << n + 1 << std::endl ;
}
for ( long i = 0 ; i <= n ; ++i ) {
const long answer = i + 1 ;
if ( host_result(i) != answer ) {
std::cerr << "test_task_team value ERROR result(" << i << ") = "
<< host_result(i) << " != " << answer << std::endl ;
}
}
}
//----------------------------------------------------------------------------
template< class ExecSpace >
struct TaskLatchAdd {
typedef void value_type ;
typedef Kokkos::Experimental::Future< Kokkos::Experimental::Latch , ExecSpace > future_type ;
future_type latch ;
volatile int * count ;
KOKKOS_INLINE_FUNCTION
TaskLatchAdd( const future_type & arg_latch
, volatile int * const arg_count )
: latch( arg_latch )
, count( arg_count )
{}
KOKKOS_INLINE_FUNCTION
void apply()
{
Kokkos::atomic_fetch_add( count , 1 );
latch.add(1);
}
};
template< class ExecSpace >
struct TaskLatchRun {
typedef void value_type ;
typedef Kokkos::Experimental::TaskPolicy< ExecSpace > policy_type ;
typedef Kokkos::Experimental::Future< Kokkos::Experimental::Latch , ExecSpace > future_type ;
policy_type policy ;
int total ;
volatile int count ;
KOKKOS_INLINE_FUNCTION
TaskLatchRun( const policy_type & arg_policy , const int arg_total )
: policy(arg_policy), total(arg_total), count(0) {}
KOKKOS_INLINE_FUNCTION
void apply()
{
if ( 0 == count && 0 < total ) {
future_type latch = policy.create_latch( total );
for ( int i = 0 ; i < total ; ++i ) {
auto f = policy.task_create( TaskLatchAdd<ExecSpace>(latch,&count) , 0 );
if ( f.is_null() ) {
Kokkos::abort("TaskLatchAdd allocation FAILED" );
}
if ( policy.spawn( f ).is_null() ) {
Kokkos::abort("TaskLatcAdd spawning FAILED" );
}
}
policy.add_dependence( this , latch );
policy.respawn( this );
}
else if ( count != total ) {
printf("TaskLatchRun FAILED %d != %d\n",count,total);
}
}
};
template< class ExecSpace >
void test_latch( int n )
{
typedef TaskLatchRun< ExecSpace > task_type ;
typedef typename task_type::policy_type policy_type ;
// Primary + latch + n * LatchAdd
//
// This test uses several two different block sizes for allocation from the
// memory pool, so the memory size requested must be big enough to cause two
// or more superblocks to be used. Currently, the superblock size in the
// task policy is 2^16, so make the minimum requested memory size greater
// than this.
const unsigned task_max_count = n + 2 < 256 ? 256 : n + 2;
const unsigned task_max_size = 256;
const unsigned task_dependence = 4 ;
policy_type
policy( task_max_count
, task_max_size
, task_dependence );
policy.spawn( policy.proc_create( TaskLatchRun<ExecSpace>(policy,n) ) );
wait( policy );
}
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
} // namespace TestTaskPolicy
#endif /* #if defined( KOKKOS_ENABLE_TASKPOLICY ) */
#endif /* #ifndef KOKKOS_UNITTEST_TASKPOLICY_HPP */

Event Timeline