Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92294379
dlaed5.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 19, 04:07
Size
5 KB
Mime Type
text/html
Expires
Thu, Nov 21, 04:07 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22415388
Attached To
rLAMMPS lammps
dlaed5.f
View Options
*>
\
brief
\
b
DLAED5
used
by
sstedc
.
Solves
the
2
-
by
-
2
secular
equation
.
*
*
===========
DOCUMENTATION
===========
*
*
Online
html
documentation
available
at
*
http
:
//
www
.
netlib
.
org
/
lapack
/
explore
-
html
/
*
*>
\
htmlonly
*>
Download
DLAED5
+
dependencies
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed5.f"
>
*>
[
TGZ
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed5.f"
>
*>
[
ZIP
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed5.f"
>
*>
[
TXT
]
</
a
>
*>
\
endhtmlonly
*
*
Definition
:
*
===========
*
*
SUBROUTINE
DLAED5
(
I
,
D
,
Z
,
DELTA
,
RHO
,
DLAM
)
*
*
..
Scalar
Arguments
..
*
INTEGER
I
*
DOUBLE PRECISION
DLAM
,
RHO
*
..
*
..
Array
Arguments
..
*
DOUBLE PRECISION
D
(
2
),
DELTA
(
2
),
Z
(
2
)
*
..
*
*
*>
\
par
Purpose
:
*
=============
*>
*>
\
verbatim
*>
*>
This
subroutine
computes
the
I
-
th
eigenvalue
of
a
symmetric
rank
-
one
*>
modification
of
a
2
-
by
-
2
diagonal
matrix
*>
*>
diag
(
D
)
+
RHO
*
Z
*
transpose
(
Z
)
.
*>
*>
The
diagonal
elements
in
the
array
D
are
assumed
to
satisfy
*>
*>
D
(
i
)
<
D
(
j
)
for
i
<
j
.
*>
*>
We
also
assume
RHO
>
0
and
that
the
Euclidean
norm
of
the
vector
*>
Z
is
one
.
*>
\
endverbatim
*
*
Arguments
:
*
==========
*
*>
\
param
[
in
]
I
*>
\
verbatim
*>
I
is
INTEGER
*>
The
index
of
the
eigenvalue
to
be
computed
.
I
=
1
or
I
=
2.
*>
\
endverbatim
*>
*>
\
param
[
in
]
D
*>
\
verbatim
*>
D
is
DOUBLE PRECISION
array
,
dimension
(
2
)
*>
The
original
eigenvalues
.
We
assume
D
(
1
)
<
D
(
2
)
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
Z
*>
\
verbatim
*>
Z
is
DOUBLE PRECISION
array
,
dimension
(
2
)
*>
The
components
of
the
updating
vector
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
DELTA
*>
\
verbatim
*>
DELTA
is
DOUBLE PRECISION
array
,
dimension
(
2
)
*>
The
vector
DELTA
contains
the
information
necessary
*>
to
construct
the
eigenvectors
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
RHO
*>
\
verbatim
*>
RHO
is
DOUBLE PRECISION
*>
The
scalar
in
the
symmetric
updating
formula
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
DLAM
*>
\
verbatim
*>
DLAM
is
DOUBLE PRECISION
*>
The
computed
lambda_I
,
the
I
-
th
updated
eigenvalue
.
*>
\
endverbatim
*
*
Authors
:
*
========
*
*>
\
author
Univ
.
of
Tennessee
*>
\
author
Univ
.
of
California
Berkeley
*>
\
author
Univ
.
of
Colorado
Denver
*>
\
author
NAG
Ltd
.
*
*>
\
date
September
2012
*
*>
\
ingroup
auxOTHERcomputational
*
*>
\
par
Contributors
:
*
==================
*>
*>
Ren
-
Cang
Li
,
Computer
Science
Division
,
University
of
California
*>
at
Berkeley
,
USA
*>
*
=====================================================================
SUBROUTINE
DLAED5
(
I
,
D
,
Z
,
DELTA
,
RHO
,
DLAM
)
*
*
--
LAPACK
computational
routine
(
version
3.4.2
)
--
*
--
LAPACK
is
a
software
package
provided
by
Univ
.
of
Tennessee
,
--
*
--
Univ
.
of
California
Berkeley
,
Univ
.
of
Colorado
Denver
and
NAG
Ltd
..
--
*
September
2012
*
*
..
Scalar
Arguments
..
INTEGER
I
DOUBLE PRECISION
DLAM
,
RHO
*
..
*
..
Array
Arguments
..
DOUBLE PRECISION
D
(
2
),
DELTA
(
2
),
Z
(
2
)
*
..
*
*
=====================================================================
*
*
..
Parameters
..
DOUBLE PRECISION
ZERO
,
ONE
,
TWO
,
FOUR
PARAMETER
(
ZERO
=
0.0
D0
,
ONE
=
1.0
D0
,
TWO
=
2.0
D0
,
$
FOUR
=
4.0
D0
)
*
..
*
..
Local
Scalars
..
DOUBLE PRECISION
B
,
C
,
DEL
,
TAU
,
TEMP
,
W
*
..
*
..
Intrinsic
Functions
..
INTRINSIC
ABS
,
SQRT
*
..
*
..
Executable
Statements
..
*
DEL
=
D
(
2
)
-
D
(
1
)
IF
(
I
.EQ.
1
)
THEN
W
=
ONE
+
TWO
*
RHO
*
(
Z
(
2
)
*
Z
(
2
)
-
Z
(
1
)
*
Z
(
1
)
)
/
DEL
IF
(
W
.GT.
ZERO
)
THEN
B
=
DEL
+
RHO
*
(
Z
(
1
)
*
Z
(
1
)
+
Z
(
2
)
*
Z
(
2
)
)
C
=
RHO
*
Z
(
1
)
*
Z
(
1
)
*
DEL
*
*
B
>
ZERO
,
always
*
TAU
=
TWO
*
C
/
(
B
+
SQRT
(
ABS
(
B
*
B
-
FOUR
*
C
)
)
)
DLAM
=
D
(
1
)
+
TAU
DELTA
(
1
)
=
-
Z
(
1
)
/
TAU
DELTA
(
2
)
=
Z
(
2
)
/
(
DEL
-
TAU
)
ELSE
B
=
-
DEL
+
RHO
*
(
Z
(
1
)
*
Z
(
1
)
+
Z
(
2
)
*
Z
(
2
)
)
C
=
RHO
*
Z
(
2
)
*
Z
(
2
)
*
DEL
IF
(
B
.GT.
ZERO
)
THEN
TAU
=
-
TWO
*
C
/
(
B
+
SQRT
(
B
*
B
+
FOUR
*
C
)
)
ELSE
TAU
=
(
B
-
SQRT
(
B
*
B
+
FOUR
*
C
)
)
/
TWO
END IF
DLAM
=
D
(
2
)
+
TAU
DELTA
(
1
)
=
-
Z
(
1
)
/
(
DEL
+
TAU
)
DELTA
(
2
)
=
-
Z
(
2
)
/
TAU
END IF
TEMP
=
SQRT
(
DELTA
(
1
)
*
DELTA
(
1
)
+
DELTA
(
2
)
*
DELTA
(
2
)
)
DELTA
(
1
)
=
DELTA
(
1
)
/
TEMP
DELTA
(
2
)
=
DELTA
(
2
)
/
TEMP
ELSE
*
*
Now
I
=
2
*
B
=
-
DEL
+
RHO
*
(
Z
(
1
)
*
Z
(
1
)
+
Z
(
2
)
*
Z
(
2
)
)
C
=
RHO
*
Z
(
2
)
*
Z
(
2
)
*
DEL
IF
(
B
.GT.
ZERO
)
THEN
TAU
=
(
B
+
SQRT
(
B
*
B
+
FOUR
*
C
)
)
/
TWO
ELSE
TAU
=
TWO
*
C
/
(
-
B
+
SQRT
(
B
*
B
+
FOUR
*
C
)
)
END IF
DLAM
=
D
(
2
)
+
TAU
DELTA
(
1
)
=
-
Z
(
1
)
/
(
DEL
+
TAU
)
DELTA
(
2
)
=
-
Z
(
2
)
/
TAU
TEMP
=
SQRT
(
DELTA
(
1
)
*
DELTA
(
1
)
+
DELTA
(
2
)
*
DELTA
(
2
)
)
DELTA
(
1
)
=
DELTA
(
1
)
/
TEMP
DELTA
(
2
)
=
DELTA
(
2
)
/
TEMP
END IF
RETURN
*
*
End
OF
DLAED5
*
END
Event Timeline
Log In to Comment