Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91509709
pair_colloid_gpu.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 11, 18:51
Size
10 KB
Mime Type
text/x-c
Expires
Wed, Nov 13, 18:51 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22275675
Attached To
rLAMMPS lammps
pair_colloid_gpu.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Trung Dac Nguyen (ORNL)
------------------------------------------------------------------------- */
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "pair_colloid_gpu.h"
#include "atom.h"
#include "atom_vec.h"
#include "comm.h"
#include "force.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "integrate.h"
#include "memory.h"
#include "error.h"
#include "neigh_request.h"
#include "universe.h"
#include "update.h"
#include "domain.h"
#include <string.h>
#include "gpu_extra.h"
using namespace LAMMPS_NS;
// External functions from cuda library for atom decomposition
int colloid_gpu_init(const int ntypes, double **cutsq, double **host_lj1,
double **host_lj2, double **host_lj3, double **host_lj4,
double **offset, double *special_lj, double **host_a12,
double **host_a1, double **host_a2, double **host_d1,
double **host_d2, double **host_sigma3, double **host_sigma6,
int **host_form, const int nlocal,
const int nall, const int max_nbors, const int maxspecial,
const double cell_size, int &gpu_mode, FILE *screen);
void colloid_gpu_clear();
int ** colloid_gpu_compute_n(const int ago, const int inum,
const int nall, double **host_x, int *host_type,
double *sublo, double *subhi, tagint *tag, int **nspecial,
tagint **special, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
int **ilist, int **jnum,
const double cpu_time, bool &success);
void colloid_gpu_compute(const int ago, const int inum, const int nall,
double **host_x, int *host_type, int *ilist, int *numj,
int **firstneigh, const bool eflag, const bool vflag,
const bool eatom, const bool vatom, int &host_start,
const double cpu_time, bool &success);
double colloid_gpu_bytes();
/* ---------------------------------------------------------------------- */
PairColloidGPU::PairColloidGPU(LAMMPS *lmp) : PairColloid(lmp), gpu_mode(GPU_FORCE)
{
respa_enable = 0;
reinitflag = 0;
cpu_time = 0.0;
GPU_EXTRA::gpu_ready(lmp->modify, lmp->error);
}
/* ----------------------------------------------------------------------
free all arrays
------------------------------------------------------------------------- */
PairColloidGPU::~PairColloidGPU()
{
colloid_gpu_clear();
}
/* ---------------------------------------------------------------------- */
void PairColloidGPU::compute(int eflag, int vflag)
{
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = vflag_fdotr = 0;
int nall = atom->nlocal + atom->nghost;
int inum, host_start;
bool success = true;
int *ilist, *numneigh, **firstneigh;
if (gpu_mode != GPU_FORCE) {
inum = atom->nlocal;
firstneigh = colloid_gpu_compute_n(neighbor->ago, inum, nall,
atom->x, atom->type, domain->sublo,
domain->subhi, atom->tag, atom->nspecial,
atom->special, eflag, vflag, eflag_atom,
vflag_atom, host_start,
&ilist, &numneigh, cpu_time, success);
} else {
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
colloid_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type,
ilist, numneigh, firstneigh, eflag, vflag, eflag_atom,
vflag_atom, host_start, cpu_time, success);
}
if (!success)
error->one(FLERR,"Insufficient memory on accelerator");
if (host_start<inum) {
cpu_time = MPI_Wtime();
cpu_compute(host_start, inum, eflag, vflag, ilist, numneigh, firstneigh);
cpu_time = MPI_Wtime() - cpu_time;
}
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairColloidGPU::init_style()
{
if (force->newton_pair)
error->all(FLERR,"Cannot use newton pair with colloid/gpu pair style");
// Repeat cutsq calculation because done after call to init_style
double maxcut = -1.0;
double cut;
for (int i = 1; i <= atom->ntypes; i++) {
for (int j = i; j <= atom->ntypes; j++) {
if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) {
cut = init_one(i,j);
cut *= cut;
if (cut > maxcut)
maxcut = cut;
cutsq[i][j] = cutsq[j][i] = cut;
} else
cutsq[i][j] = cutsq[j][i] = 0.0;
}
}
double cell_size = sqrt(maxcut) + neighbor->skin;
int **_form = NULL;
int n=atom->ntypes;
memory->create(_form,n+1,n+1,"colloid/gpu:_form");
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (form[i][j] == SMALL_SMALL) _form[i][j] = 0;
else if (form[i][j] == SMALL_LARGE) _form[i][j] = 1;
else if (form[i][j] == LARGE_LARGE) _form[i][j] = 2;
}
}
int maxspecial=0;
if (atom->molecular)
maxspecial=atom->maxspecial;
int success = colloid_gpu_init(atom->ntypes+1, cutsq, lj1, lj2, lj3, lj4,
offset, force->special_lj, a12, a1, a2,
d1, d2, sigma3, sigma6, _form, atom->nlocal,
atom->nlocal+atom->nghost, 300, maxspecial,
cell_size, gpu_mode, screen);
memory->destroy(_form);
GPU_EXTRA::check_flag(success,error,world);
if (gpu_mode == GPU_FORCE) {
int irequest = neighbor->request(this,instance_me);
neighbor->requests[irequest]->half = 0;
neighbor->requests[irequest]->full = 1;
}
}
/* ---------------------------------------------------------------------- */
double PairColloidGPU::memory_usage()
{
double bytes = Pair::memory_usage();
return bytes + colloid_gpu_bytes();
}
/* ---------------------------------------------------------------------- */
void PairColloidGPU::cpu_compute(int start, int inum, int eflag, int vflag,
int *ilist, int *numneigh, int **firstneigh)
{
int i,j,ii,jj,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
double r,rsq,r2inv,r6inv,forcelj,factor_lj;
double c1,c2,fR,dUR,dUA;
double K[9],h[4],g[4];
int *jlist;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
double *special_lj = force->special_lj;
// loop over neighbors of my atoms
for (ii = start; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
if (rsq >= cutsq[itype][jtype]) continue;
switch (form[itype][jtype]) {
case SMALL_SMALL:
r2inv = 1.0/rsq;
r6inv = r2inv*r2inv*r2inv;
forcelj = r6inv * (lj1[itype][jtype]*r6inv - lj2[itype][jtype]);
fpair = factor_lj*forcelj*r2inv;
if (eflag)
evdwl = r6inv*(r6inv*lj3[itype][jtype]-lj4[itype][jtype]) -
offset[itype][jtype];
break;
case SMALL_LARGE:
c2 = a2[itype][jtype];
K[1] = c2*c2;
K[2] = rsq;
K[0] = K[1] - rsq;
K[4] = rsq*rsq;
K[3] = K[1] - K[2];
K[3] *= K[3]*K[3];
K[6] = K[3]*K[3];
fR = sigma3[itype][jtype]*a12[itype][jtype]*c2*K[1]/K[3];
fpair = 4.0/15.0*fR*factor_lj *
(2.0*(K[1]+K[2]) * (K[1]*(5.0*K[1]+22.0*K[2])+5.0*K[4]) *
sigma6[itype][jtype]/K[6]-5.0) / K[0];
if (eflag)
evdwl = 2.0/9.0*fR *
(1.0-(K[1]*(K[1]*(K[1]/3.0+3.0*K[2])+4.2*K[4])+K[2]*K[4]) *
sigma6[itype][jtype]/K[6]) - offset[itype][jtype];
if (rsq <= K[1])
error->one(FLERR,"Overlapping small/large in pair colloid");
break;
case LARGE_LARGE:
r = sqrt(rsq);
c1 = a1[itype][jtype];
c2 = a2[itype][jtype];
K[0] = c1*c2;
K[1] = c1+c2;
K[2] = c1-c2;
K[3] = K[1]+r;
K[4] = K[1]-r;
K[5] = K[2]+r;
K[6] = K[2]-r;
K[7] = 1.0/(K[3]*K[4]);
K[8] = 1.0/(K[5]*K[6]);
g[0] = pow(K[3],-7.0);
g[1] = pow(K[4],-7.0);
g[2] = pow(K[5],-7.0);
g[3] = pow(K[6],-7.0);
h[0] = ((K[3]+5.0*K[1])*K[3]+30.0*K[0])*g[0];
h[1] = ((K[4]+5.0*K[1])*K[4]+30.0*K[0])*g[1];
h[2] = ((K[5]+5.0*K[2])*K[5]-30.0*K[0])*g[2];
h[3] = ((K[6]+5.0*K[2])*K[6]-30.0*K[0])*g[3];
g[0] *= 42.0*K[0]/K[3]+6.0*K[1]+K[3];
g[1] *= 42.0*K[0]/K[4]+6.0*K[1]+K[4];
g[2] *= -42.0*K[0]/K[5]+6.0*K[2]+K[5];
g[3] *= -42.0*K[0]/K[6]+6.0*K[2]+K[6];
fR = a12[itype][jtype]*sigma6[itype][jtype]/r/37800.0;
evdwl = fR * (h[0]-h[1]-h[2]+h[3]);
dUR = evdwl/r + 5.0*fR*(g[0]+g[1]-g[2]-g[3]);
dUA = -a12[itype][jtype]/3.0*r*((2.0*K[0]*K[7]+1.0)*K[7] +
(2.0*K[0]*K[8]-1.0)*K[8]);
fpair = factor_lj * (dUR+dUA)/r;
if (eflag)
evdwl += a12[itype][jtype]/6.0 *
(2.0*K[0]*(K[7]+K[8])-log(K[8]/K[7])) - offset[itype][jtype];
if (r <= K[1])
error->one(FLERR,"Overlapping large/large in pair colloid");
break;
}
if (eflag) evdwl *= factor_lj;
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (evflag) ev_tally_full(i,evdwl,0.0,fpair,delx,dely,delz);
}
}
}
Event Timeline
Log In to Comment