Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90990595
fix_wall_gran.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 17:25
Size
22 KB
Mime Type
text/x-c
Expires
Fri, Nov 8, 17:25 (2 d)
Engine
blob
Format
Raw Data
Handle
22100349
Attached To
rLAMMPS lammps
fix_wall_gran.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Leo Silbert (SNL), Gary Grest (SNL)
------------------------------------------------------------------------- */
#include "math.h"
#include "stdlib.h"
#include "string.h"
#include "fix_wall_gran.h"
#include "atom.h"
#include "domain.h"
#include "update.h"
#include "force.h"
#include "pair.h"
#include "modify.h"
#include "respa.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
using
namespace
FixConst
;
using
namespace
MathConst
;
enum
{
XPLANE
=
0
,
YPLANE
=
1
,
ZPLANE
=
2
,
ZCYLINDER
};
// XYZ PLANE need to be 0,1,2
enum
{
HOOKE
,
HOOKE_HISTORY
,
HERTZ_HISTORY
};
#define BIG 1.0e20
/* ---------------------------------------------------------------------- */
FixWallGran
::
FixWallGran
(
LAMMPS
*
lmp
,
int
narg
,
char
**
arg
)
:
Fix
(
lmp
,
narg
,
arg
)
{
if
(
narg
<
10
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
if
(
!
atom
->
sphere_flag
)
error
->
all
(
FLERR
,
"Fix wall/gran requires atom style sphere"
);
restart_peratom
=
1
;
create_attribute
=
1
;
// wall/particle coefficients
kn
=
force
->
numeric
(
FLERR
,
arg
[
3
]);
if
(
strcmp
(
arg
[
4
],
"NULL"
)
==
0
)
kt
=
kn
*
2.0
/
7.0
;
else
kt
=
force
->
numeric
(
FLERR
,
arg
[
4
]);
gamman
=
force
->
numeric
(
FLERR
,
arg
[
5
]);
if
(
strcmp
(
arg
[
6
],
"NULL"
)
==
0
)
gammat
=
0.5
*
gamman
;
else
gammat
=
force
->
numeric
(
FLERR
,
arg
[
6
]);
xmu
=
force
->
numeric
(
FLERR
,
arg
[
7
]);
int
dampflag
=
force
->
inumeric
(
FLERR
,
arg
[
8
]);
if
(
dampflag
==
0
)
gammat
=
0.0
;
if
(
kn
<
0.0
||
kt
<
0.0
||
gamman
<
0.0
||
gammat
<
0.0
||
xmu
<
0.0
||
xmu
>
10000.0
||
dampflag
<
0
||
dampflag
>
1
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
// convert Kn and Kt from pressure units to force/distance^2 if Hertzian
if
(
force
->
pair_match
(
"gran/hertz/history"
,
1
))
{
kn
/=
force
->
nktv2p
;
kt
/=
force
->
nktv2p
;
}
// wallstyle args
int
iarg
=
9
;
if
(
strcmp
(
arg
[
iarg
],
"xplane"
)
==
0
)
{
if
(
narg
<
iarg
+
3
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
wallstyle
=
XPLANE
;
if
(
strcmp
(
arg
[
iarg
+
1
],
"NULL"
)
==
0
)
lo
=
-
BIG
;
else
lo
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
if
(
strcmp
(
arg
[
iarg
+
2
],
"NULL"
)
==
0
)
hi
=
BIG
;
else
hi
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
iarg
+=
3
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"yplane"
)
==
0
)
{
if
(
narg
<
iarg
+
3
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
wallstyle
=
YPLANE
;
if
(
strcmp
(
arg
[
iarg
+
1
],
"NULL"
)
==
0
)
lo
=
-
BIG
;
else
lo
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
if
(
strcmp
(
arg
[
iarg
+
2
],
"NULL"
)
==
0
)
hi
=
BIG
;
else
hi
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
iarg
+=
3
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"zplane"
)
==
0
)
{
if
(
narg
<
iarg
+
3
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
wallstyle
=
ZPLANE
;
if
(
strcmp
(
arg
[
iarg
+
1
],
"NULL"
)
==
0
)
lo
=
-
BIG
;
else
lo
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
if
(
strcmp
(
arg
[
iarg
+
2
],
"NULL"
)
==
0
)
hi
=
BIG
;
else
hi
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
iarg
+=
3
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"zcylinder"
)
==
0
)
{
if
(
narg
<
iarg
+
2
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
wallstyle
=
ZCYLINDER
;
lo
=
hi
=
0.0
;
cylradius
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
1
]);
iarg
+=
2
;
}
// check for trailing keyword/values
wiggle
=
0
;
wshear
=
0
;
while
(
iarg
<
narg
)
{
if
(
strcmp
(
arg
[
iarg
],
"wiggle"
)
==
0
)
{
if
(
iarg
+
4
>
narg
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"x"
)
==
0
)
axis
=
0
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"y"
)
==
0
)
axis
=
1
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"z"
)
==
0
)
axis
=
2
;
else
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
amplitude
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
period
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
3
]);
wiggle
=
1
;
iarg
+=
4
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"shear"
)
==
0
)
{
if
(
iarg
+
3
>
narg
)
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"x"
)
==
0
)
axis
=
0
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"y"
)
==
0
)
axis
=
1
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"z"
)
==
0
)
axis
=
2
;
else
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
vshear
=
force
->
numeric
(
FLERR
,
arg
[
iarg
+
2
]);
wshear
=
1
;
iarg
+=
3
;
}
else
error
->
all
(
FLERR
,
"Illegal fix wall/gran command"
);
}
if
(
wallstyle
==
XPLANE
&&
domain
->
xperiodic
)
error
->
all
(
FLERR
,
"Cannot use wall in periodic dimension"
);
if
(
wallstyle
==
YPLANE
&&
domain
->
yperiodic
)
error
->
all
(
FLERR
,
"Cannot use wall in periodic dimension"
);
if
(
wallstyle
==
ZPLANE
&&
domain
->
zperiodic
)
error
->
all
(
FLERR
,
"Cannot use wall in periodic dimension"
);
if
(
wallstyle
==
ZCYLINDER
&&
(
domain
->
xperiodic
||
domain
->
yperiodic
))
error
->
all
(
FLERR
,
"Cannot use wall in periodic dimension"
);
if
(
wiggle
&&
wshear
)
error
->
all
(
FLERR
,
"Cannot wiggle and shear fix wall/gran"
);
if
(
wiggle
&&
wallstyle
==
ZCYLINDER
&&
axis
!=
2
)
error
->
all
(
FLERR
,
"Invalid wiggle direction for fix wall/gran"
);
if
(
wshear
&&
wallstyle
==
XPLANE
&&
axis
==
0
)
error
->
all
(
FLERR
,
"Invalid shear direction for fix wall/gran"
);
if
(
wshear
&&
wallstyle
==
YPLANE
&&
axis
==
1
)
error
->
all
(
FLERR
,
"Invalid shear direction for fix wall/gran"
);
if
(
wshear
&&
wallstyle
==
ZPLANE
&&
axis
==
2
)
error
->
all
(
FLERR
,
"Invalid shear direction for fix wall/gran"
);
// setup oscillations
if
(
wiggle
)
omega
=
2.0
*
MY_PI
/
period
;
// perform initial allocation of atom-based arrays
// register with Atom class
shear
=
NULL
;
grow_arrays
(
atom
->
nmax
);
atom
->
add_callback
(
0
);
atom
->
add_callback
(
1
);
// initialize as if particle is not touching wall
int
nlocal
=
atom
->
nlocal
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
shear
[
i
][
0
]
=
shear
[
i
][
1
]
=
shear
[
i
][
2
]
=
0.0
;
time_origin
=
update
->
ntimestep
;
}
/* ---------------------------------------------------------------------- */
FixWallGran
::~
FixWallGran
()
{
// unregister callbacks to this fix from Atom class
atom
->
delete_callback
(
id
,
0
);
atom
->
delete_callback
(
id
,
1
);
// delete locally stored arrays
memory
->
destroy
(
shear
);
}
/* ---------------------------------------------------------------------- */
int
FixWallGran
::
setmask
()
{
int
mask
=
0
;
mask
|=
POST_FORCE
;
mask
|=
POST_FORCE_RESPA
;
return
mask
;
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
init
()
{
dt
=
update
->
dt
;
if
(
strstr
(
update
->
integrate_style
,
"respa"
))
nlevels_respa
=
((
Respa
*
)
update
->
integrate
)
->
nlevels
;
// set pairstyle from granular pair style
if
(
force
->
pair_match
(
"gran/hooke"
,
1
))
pairstyle
=
HOOKE
;
else
if
(
force
->
pair_match
(
"gran/hooke/history"
,
1
))
pairstyle
=
HOOKE_HISTORY
;
else
if
(
force
->
pair_match
(
"gran/hooke/history/omp"
,
1
))
pairstyle
=
HOOKE_HISTORY
;
else
if
(
force
->
pair_match
(
"gran/hertz/history"
,
1
))
pairstyle
=
HERTZ_HISTORY
;
else
if
(
force
->
pair_match
(
"gran/hertz/history/omp"
,
1
))
pairstyle
=
HERTZ_HISTORY
;
else
error
->
all
(
FLERR
,
"Fix wall/gran is incompatible with Pair style"
);
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
setup
(
int
vflag
)
{
if
(
strstr
(
update
->
integrate_style
,
"verlet"
))
post_force
(
vflag
);
else
{
((
Respa
*
)
update
->
integrate
)
->
copy_flevel_f
(
nlevels_respa
-
1
);
post_force_respa
(
vflag
,
nlevels_respa
-
1
,
0
);
((
Respa
*
)
update
->
integrate
)
->
copy_f_flevel
(
nlevels_respa
-
1
);
}
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
post_force
(
int
vflag
)
{
double
vwall
[
3
],
dx
,
dy
,
dz
,
del1
,
del2
,
delxy
,
delr
,
rsq
;
// set position of wall to initial settings and velocity to 0.0
// if wiggle or shear, set wall position and velocity accordingly
double
wlo
=
lo
;
double
whi
=
hi
;
vwall
[
0
]
=
vwall
[
1
]
=
vwall
[
2
]
=
0.0
;
if
(
wiggle
)
{
double
arg
=
omega
*
(
update
->
ntimestep
-
time_origin
)
*
dt
;
if
(
wallstyle
==
axis
)
{
wlo
=
lo
+
amplitude
-
amplitude
*
cos
(
arg
);
whi
=
hi
+
amplitude
-
amplitude
*
cos
(
arg
);
}
vwall
[
axis
]
=
amplitude
*
omega
*
sin
(
arg
);
}
else
if
(
wshear
)
vwall
[
axis
]
=
vshear
;
// loop over all my atoms
// rsq = distance from wall
// dx,dy,dz = signed distance from wall
// for rotating cylinder, reset vwall based on particle position
// skip atom if not close enough to wall
// if wall was set to NULL, it's skipped since lo/hi are infinity
// compute force and torque on atom if close enough to wall
// via wall potential matched to pair potential
// set shear if pair potential stores history
double
**
x
=
atom
->
x
;
double
**
v
=
atom
->
v
;
double
**
f
=
atom
->
f
;
double
**
omega
=
atom
->
omega
;
double
**
torque
=
atom
->
torque
;
double
*
radius
=
atom
->
radius
;
double
*
rmass
=
atom
->
rmass
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
shearupdate
=
1
;
if
(
update
->
setupflag
)
shearupdate
=
0
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
{
if
(
mask
[
i
]
&
groupbit
)
{
dx
=
dy
=
dz
=
0.0
;
if
(
wallstyle
==
XPLANE
)
{
del1
=
x
[
i
][
0
]
-
wlo
;
del2
=
whi
-
x
[
i
][
0
];
if
(
del1
<
del2
)
dx
=
del1
;
else
dx
=
-
del2
;
}
else
if
(
wallstyle
==
YPLANE
)
{
del1
=
x
[
i
][
1
]
-
wlo
;
del2
=
whi
-
x
[
i
][
1
];
if
(
del1
<
del2
)
dy
=
del1
;
else
dy
=
-
del2
;
}
else
if
(
wallstyle
==
ZPLANE
)
{
del1
=
x
[
i
][
2
]
-
wlo
;
del2
=
whi
-
x
[
i
][
2
];
if
(
del1
<
del2
)
dz
=
del1
;
else
dz
=
-
del2
;
}
else
if
(
wallstyle
==
ZCYLINDER
)
{
delxy
=
sqrt
(
x
[
i
][
0
]
*
x
[
i
][
0
]
+
x
[
i
][
1
]
*
x
[
i
][
1
]);
delr
=
cylradius
-
delxy
;
if
(
delr
>
radius
[
i
])
dz
=
cylradius
;
else
{
dx
=
-
delr
/
delxy
*
x
[
i
][
0
];
dy
=
-
delr
/
delxy
*
x
[
i
][
1
];
if
(
wshear
&&
axis
!=
2
)
{
vwall
[
0
]
=
vshear
*
x
[
i
][
1
]
/
delxy
;
vwall
[
1
]
=
-
vshear
*
x
[
i
][
0
]
/
delxy
;
vwall
[
2
]
=
0.0
;
}
}
}
rsq
=
dx
*
dx
+
dy
*
dy
+
dz
*
dz
;
if
(
rsq
>
radius
[
i
]
*
radius
[
i
])
{
if
(
pairstyle
!=
HOOKE
)
{
shear
[
i
][
0
]
=
0.0
;
shear
[
i
][
1
]
=
0.0
;
shear
[
i
][
2
]
=
0.0
;
}
}
else
{
if
(
pairstyle
==
HOOKE
)
hooke
(
rsq
,
dx
,
dy
,
dz
,
vwall
,
v
[
i
],
f
[
i
],
omega
[
i
],
torque
[
i
],
radius
[
i
],
rmass
[
i
]);
else
if
(
pairstyle
==
HOOKE_HISTORY
)
hooke_history
(
rsq
,
dx
,
dy
,
dz
,
vwall
,
v
[
i
],
f
[
i
],
omega
[
i
],
torque
[
i
],
radius
[
i
],
rmass
[
i
],
shear
[
i
]);
else
if
(
pairstyle
==
HERTZ_HISTORY
)
hertz_history
(
rsq
,
dx
,
dy
,
dz
,
vwall
,
v
[
i
],
f
[
i
],
omega
[
i
],
torque
[
i
],
radius
[
i
],
rmass
[
i
],
shear
[
i
]);
}
}
}
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
post_force_respa
(
int
vflag
,
int
ilevel
,
int
iloop
)
{
if
(
ilevel
==
nlevels_respa
-
1
)
post_force
(
vflag
);
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
hooke
(
double
rsq
,
double
dx
,
double
dy
,
double
dz
,
double
*
vwall
,
double
*
v
,
double
*
f
,
double
*
omega
,
double
*
torque
,
double
radius
,
double
mass
)
{
double
r
,
vr1
,
vr2
,
vr3
,
vnnr
,
vn1
,
vn2
,
vn3
,
vt1
,
vt2
,
vt3
;
double
wr1
,
wr2
,
wr3
,
meff
,
damp
,
ccel
,
vtr1
,
vtr2
,
vtr3
,
vrel
;
double
fn
,
fs
,
ft
,
fs1
,
fs2
,
fs3
,
fx
,
fy
,
fz
,
tor1
,
tor2
,
tor3
,
rinv
,
rsqinv
;
r
=
sqrt
(
rsq
);
rinv
=
1.0
/
r
;
rsqinv
=
1.0
/
rsq
;
// relative translational velocity
vr1
=
v
[
0
]
-
vwall
[
0
];
vr2
=
v
[
1
]
-
vwall
[
1
];
vr3
=
v
[
2
]
-
vwall
[
2
];
// normal component
vnnr
=
vr1
*
dx
+
vr2
*
dy
+
vr3
*
dz
;
vn1
=
dx
*
vnnr
*
rsqinv
;
vn2
=
dy
*
vnnr
*
rsqinv
;
vn3
=
dz
*
vnnr
*
rsqinv
;
// tangential component
vt1
=
vr1
-
vn1
;
vt2
=
vr2
-
vn2
;
vt3
=
vr3
-
vn3
;
// relative rotational velocity
wr1
=
radius
*
omega
[
0
]
*
rinv
;
wr2
=
radius
*
omega
[
1
]
*
rinv
;
wr3
=
radius
*
omega
[
2
]
*
rinv
;
// normal forces = Hookian contact + normal velocity damping
meff
=
mass
;
damp
=
meff
*
gamman
*
vnnr
*
rsqinv
;
ccel
=
kn
*
(
radius
-
r
)
*
rinv
-
damp
;
// relative velocities
vtr1
=
vt1
-
(
dz
*
wr2
-
dy
*
wr3
);
vtr2
=
vt2
-
(
dx
*
wr3
-
dz
*
wr1
);
vtr3
=
vt3
-
(
dy
*
wr1
-
dx
*
wr2
);
vrel
=
vtr1
*
vtr1
+
vtr2
*
vtr2
+
vtr3
*
vtr3
;
vrel
=
sqrt
(
vrel
);
// force normalization
fn
=
xmu
*
fabs
(
ccel
*
r
);
fs
=
meff
*
gammat
*
vrel
;
if
(
vrel
!=
0.0
)
ft
=
MIN
(
fn
,
fs
)
/
vrel
;
else
ft
=
0.0
;
// tangential force due to tangential velocity damping
fs1
=
-
ft
*
vtr1
;
fs2
=
-
ft
*
vtr2
;
fs3
=
-
ft
*
vtr3
;
// forces & torques
fx
=
dx
*
ccel
+
fs1
;
fy
=
dy
*
ccel
+
fs2
;
fz
=
dz
*
ccel
+
fs3
;
f
[
0
]
+=
fx
;
f
[
1
]
+=
fy
;
f
[
2
]
+=
fz
;
tor1
=
rinv
*
(
dy
*
fs3
-
dz
*
fs2
);
tor2
=
rinv
*
(
dz
*
fs1
-
dx
*
fs3
);
tor3
=
rinv
*
(
dx
*
fs2
-
dy
*
fs1
);
torque
[
0
]
-=
radius
*
tor1
;
torque
[
1
]
-=
radius
*
tor2
;
torque
[
2
]
-=
radius
*
tor3
;
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
hooke_history
(
double
rsq
,
double
dx
,
double
dy
,
double
dz
,
double
*
vwall
,
double
*
v
,
double
*
f
,
double
*
omega
,
double
*
torque
,
double
radius
,
double
mass
,
double
*
shear
)
{
double
r
,
vr1
,
vr2
,
vr3
,
vnnr
,
vn1
,
vn2
,
vn3
,
vt1
,
vt2
,
vt3
;
double
wr1
,
wr2
,
wr3
,
meff
,
damp
,
ccel
,
vtr1
,
vtr2
,
vtr3
,
vrel
;
double
fn
,
fs
,
fs1
,
fs2
,
fs3
,
fx
,
fy
,
fz
,
tor1
,
tor2
,
tor3
;
double
shrmag
,
rsht
,
rinv
,
rsqinv
;
r
=
sqrt
(
rsq
);
rinv
=
1.0
/
r
;
rsqinv
=
1.0
/
rsq
;
// relative translational velocity
vr1
=
v
[
0
]
-
vwall
[
0
];
vr2
=
v
[
1
]
-
vwall
[
1
];
vr3
=
v
[
2
]
-
vwall
[
2
];
// normal component
vnnr
=
vr1
*
dx
+
vr2
*
dy
+
vr3
*
dz
;
vn1
=
dx
*
vnnr
*
rsqinv
;
vn2
=
dy
*
vnnr
*
rsqinv
;
vn3
=
dz
*
vnnr
*
rsqinv
;
// tangential component
vt1
=
vr1
-
vn1
;
vt2
=
vr2
-
vn2
;
vt3
=
vr3
-
vn3
;
// relative rotational velocity
wr1
=
radius
*
omega
[
0
]
*
rinv
;
wr2
=
radius
*
omega
[
1
]
*
rinv
;
wr3
=
radius
*
omega
[
2
]
*
rinv
;
// normal forces = Hookian contact + normal velocity damping
meff
=
mass
;
damp
=
meff
*
gamman
*
vnnr
*
rsqinv
;
ccel
=
kn
*
(
radius
-
r
)
*
rinv
-
damp
;
// relative velocities
vtr1
=
vt1
-
(
dz
*
wr2
-
dy
*
wr3
);
vtr2
=
vt2
-
(
dx
*
wr3
-
dz
*
wr1
);
vtr3
=
vt3
-
(
dy
*
wr1
-
dx
*
wr2
);
vrel
=
vtr1
*
vtr1
+
vtr2
*
vtr2
+
vtr3
*
vtr3
;
vrel
=
sqrt
(
vrel
);
// shear history effects
if
(
shearupdate
)
{
shear
[
0
]
+=
vtr1
*
dt
;
shear
[
1
]
+=
vtr2
*
dt
;
shear
[
2
]
+=
vtr3
*
dt
;
}
shrmag
=
sqrt
(
shear
[
0
]
*
shear
[
0
]
+
shear
[
1
]
*
shear
[
1
]
+
shear
[
2
]
*
shear
[
2
]);
// rotate shear displacements
rsht
=
shear
[
0
]
*
dx
+
shear
[
1
]
*
dy
+
shear
[
2
]
*
dz
;
rsht
=
rsht
*
rsqinv
;
if
(
shearupdate
)
{
shear
[
0
]
-=
rsht
*
dx
;
shear
[
1
]
-=
rsht
*
dy
;
shear
[
2
]
-=
rsht
*
dz
;
}
// tangential forces = shear + tangential velocity damping
fs1
=
-
(
kt
*
shear
[
0
]
+
meff
*
gammat
*
vtr1
);
fs2
=
-
(
kt
*
shear
[
1
]
+
meff
*
gammat
*
vtr2
);
fs3
=
-
(
kt
*
shear
[
2
]
+
meff
*
gammat
*
vtr3
);
// rescale frictional displacements and forces if needed
fs
=
sqrt
(
fs1
*
fs1
+
fs2
*
fs2
+
fs3
*
fs3
);
fn
=
xmu
*
fabs
(
ccel
*
r
);
if
(
fs
>
fn
)
{
if
(
shrmag
!=
0.0
)
{
shear
[
0
]
=
(
fn
/
fs
)
*
(
shear
[
0
]
+
meff
*
gammat
*
vtr1
/
kt
)
-
meff
*
gammat
*
vtr1
/
kt
;
shear
[
1
]
=
(
fn
/
fs
)
*
(
shear
[
1
]
+
meff
*
gammat
*
vtr2
/
kt
)
-
meff
*
gammat
*
vtr2
/
kt
;
shear
[
2
]
=
(
fn
/
fs
)
*
(
shear
[
2
]
+
meff
*
gammat
*
vtr3
/
kt
)
-
meff
*
gammat
*
vtr3
/
kt
;
fs1
*=
fn
/
fs
;
fs2
*=
fn
/
fs
;
fs3
*=
fn
/
fs
;
}
else
fs1
=
fs2
=
fs3
=
0.0
;
}
// forces & torques
fx
=
dx
*
ccel
+
fs1
;
fy
=
dy
*
ccel
+
fs2
;
fz
=
dz
*
ccel
+
fs3
;
f
[
0
]
+=
fx
;
f
[
1
]
+=
fy
;
f
[
2
]
+=
fz
;
tor1
=
rinv
*
(
dy
*
fs3
-
dz
*
fs2
);
tor2
=
rinv
*
(
dz
*
fs1
-
dx
*
fs3
);
tor3
=
rinv
*
(
dx
*
fs2
-
dy
*
fs1
);
torque
[
0
]
-=
radius
*
tor1
;
torque
[
1
]
-=
radius
*
tor2
;
torque
[
2
]
-=
radius
*
tor3
;
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
hertz_history
(
double
rsq
,
double
dx
,
double
dy
,
double
dz
,
double
*
vwall
,
double
*
v
,
double
*
f
,
double
*
omega
,
double
*
torque
,
double
radius
,
double
mass
,
double
*
shear
)
{
double
r
,
vr1
,
vr2
,
vr3
,
vnnr
,
vn1
,
vn2
,
vn3
,
vt1
,
vt2
,
vt3
;
double
wr1
,
wr2
,
wr3
,
meff
,
damp
,
ccel
,
vtr1
,
vtr2
,
vtr3
,
vrel
;
double
fn
,
fs
,
fs1
,
fs2
,
fs3
,
fx
,
fy
,
fz
,
tor1
,
tor2
,
tor3
;
double
shrmag
,
rsht
,
polyhertz
,
rinv
,
rsqinv
;
r
=
sqrt
(
rsq
);
rinv
=
1.0
/
r
;
rsqinv
=
1.0
/
rsq
;
// relative translational velocity
vr1
=
v
[
0
]
-
vwall
[
0
];
vr2
=
v
[
1
]
-
vwall
[
1
];
vr3
=
v
[
2
]
-
vwall
[
2
];
// normal component
vnnr
=
vr1
*
dx
+
vr2
*
dy
+
vr3
*
dz
;
vn1
=
dx
*
vnnr
/
rsq
;
vn2
=
dy
*
vnnr
/
rsq
;
vn3
=
dz
*
vnnr
/
rsq
;
// tangential component
vt1
=
vr1
-
vn1
;
vt2
=
vr2
-
vn2
;
vt3
=
vr3
-
vn3
;
// relative rotational velocity
wr1
=
radius
*
omega
[
0
]
*
rinv
;
wr2
=
radius
*
omega
[
1
]
*
rinv
;
wr3
=
radius
*
omega
[
2
]
*
rinv
;
// normal forces = Hertzian contact + normal velocity damping
meff
=
mass
;
damp
=
meff
*
gamman
*
vnnr
*
rsqinv
;
ccel
=
kn
*
(
radius
-
r
)
*
rinv
-
damp
;
polyhertz
=
sqrt
((
radius
-
r
)
*
radius
);
ccel
*=
polyhertz
;
// relative velocities
vtr1
=
vt1
-
(
dz
*
wr2
-
dy
*
wr3
);
vtr2
=
vt2
-
(
dx
*
wr3
-
dz
*
wr1
);
vtr3
=
vt3
-
(
dy
*
wr1
-
dx
*
wr2
);
vrel
=
vtr1
*
vtr1
+
vtr2
*
vtr2
+
vtr3
*
vtr3
;
vrel
=
sqrt
(
vrel
);
// shear history effects
if
(
shearupdate
)
{
shear
[
0
]
+=
vtr1
*
dt
;
shear
[
1
]
+=
vtr2
*
dt
;
shear
[
2
]
+=
vtr3
*
dt
;
}
shrmag
=
sqrt
(
shear
[
0
]
*
shear
[
0
]
+
shear
[
1
]
*
shear
[
1
]
+
shear
[
2
]
*
shear
[
2
]);
// rotate shear displacements
rsht
=
shear
[
0
]
*
dx
+
shear
[
1
]
*
dy
+
shear
[
2
]
*
dz
;
rsht
=
rsht
*
rsqinv
;
if
(
shearupdate
)
{
shear
[
0
]
-=
rsht
*
dx
;
shear
[
1
]
-=
rsht
*
dy
;
shear
[
2
]
-=
rsht
*
dz
;
}
// tangential forces = shear + tangential velocity damping
fs1
=
-
polyhertz
*
(
kt
*
shear
[
0
]
+
meff
*
gammat
*
vtr1
);
fs2
=
-
polyhertz
*
(
kt
*
shear
[
1
]
+
meff
*
gammat
*
vtr2
);
fs3
=
-
polyhertz
*
(
kt
*
shear
[
2
]
+
meff
*
gammat
*
vtr3
);
// rescale frictional displacements and forces if needed
fs
=
sqrt
(
fs1
*
fs1
+
fs2
*
fs2
+
fs3
*
fs3
);
fn
=
xmu
*
fabs
(
ccel
*
r
);
if
(
fs
>
fn
)
{
if
(
shrmag
!=
0.0
)
{
shear
[
0
]
=
(
fn
/
fs
)
*
(
shear
[
0
]
+
meff
*
gammat
*
vtr1
/
kt
)
-
meff
*
gammat
*
vtr1
/
kt
;
shear
[
1
]
=
(
fn
/
fs
)
*
(
shear
[
1
]
+
meff
*
gammat
*
vtr2
/
kt
)
-
meff
*
gammat
*
vtr2
/
kt
;
shear
[
2
]
=
(
fn
/
fs
)
*
(
shear
[
2
]
+
meff
*
gammat
*
vtr3
/
kt
)
-
meff
*
gammat
*
vtr3
/
kt
;
fs1
*=
fn
/
fs
;
fs2
*=
fn
/
fs
;
fs3
*=
fn
/
fs
;
}
else
fs1
=
fs2
=
fs3
=
0.0
;
}
// forces & torques
fx
=
dx
*
ccel
+
fs1
;
fy
=
dy
*
ccel
+
fs2
;
fz
=
dz
*
ccel
+
fs3
;
f
[
0
]
+=
fx
;
f
[
1
]
+=
fy
;
f
[
2
]
+=
fz
;
tor1
=
rinv
*
(
dy
*
fs3
-
dz
*
fs2
);
tor2
=
rinv
*
(
dz
*
fs1
-
dx
*
fs3
);
tor3
=
rinv
*
(
dx
*
fs2
-
dy
*
fs1
);
torque
[
0
]
-=
radius
*
tor1
;
torque
[
1
]
-=
radius
*
tor2
;
torque
[
2
]
-=
radius
*
tor3
;
}
/* ----------------------------------------------------------------------
memory usage of local atom-based arrays
------------------------------------------------------------------------- */
double
FixWallGran
::
memory_usage
()
{
int
nmax
=
atom
->
nmax
;
double
bytes
=
nmax
*
sizeof
(
int
);
bytes
+=
3
*
nmax
*
sizeof
(
double
);
return
bytes
;
}
/* ----------------------------------------------------------------------
allocate local atom-based arrays
------------------------------------------------------------------------- */
void
FixWallGran
::
grow_arrays
(
int
nmax
)
{
memory
->
grow
(
shear
,
nmax
,
3
,
"fix_wall_gran:shear"
);
}
/* ----------------------------------------------------------------------
copy values within local atom-based arrays
------------------------------------------------------------------------- */
void
FixWallGran
::
copy_arrays
(
int
i
,
int
j
,
int
delflag
)
{
shear
[
j
][
0
]
=
shear
[
i
][
0
];
shear
[
j
][
1
]
=
shear
[
i
][
1
];
shear
[
j
][
2
]
=
shear
[
i
][
2
];
}
/* ----------------------------------------------------------------------
initialize one atom's array values, called when atom is created
------------------------------------------------------------------------- */
void
FixWallGran
::
set_arrays
(
int
i
)
{
shear
[
i
][
0
]
=
shear
[
i
][
1
]
=
shear
[
i
][
2
]
=
0.0
;
}
/* ----------------------------------------------------------------------
pack values in local atom-based arrays for exchange with another proc
------------------------------------------------------------------------- */
int
FixWallGran
::
pack_exchange
(
int
i
,
double
*
buf
)
{
buf
[
0
]
=
shear
[
i
][
0
];
buf
[
1
]
=
shear
[
i
][
1
];
buf
[
2
]
=
shear
[
i
][
2
];
return
3
;
}
/* ----------------------------------------------------------------------
unpack values into local atom-based arrays after exchange
------------------------------------------------------------------------- */
int
FixWallGran
::
unpack_exchange
(
int
nlocal
,
double
*
buf
)
{
shear
[
nlocal
][
0
]
=
buf
[
0
];
shear
[
nlocal
][
1
]
=
buf
[
1
];
shear
[
nlocal
][
2
]
=
buf
[
2
];
return
3
;
}
/* ----------------------------------------------------------------------
pack values in local atom-based arrays for restart file
------------------------------------------------------------------------- */
int
FixWallGran
::
pack_restart
(
int
i
,
double
*
buf
)
{
int
m
=
0
;
buf
[
m
++
]
=
4
;
buf
[
m
++
]
=
shear
[
i
][
0
];
buf
[
m
++
]
=
shear
[
i
][
1
];
buf
[
m
++
]
=
shear
[
i
][
2
];
return
m
;
}
/* ----------------------------------------------------------------------
unpack values from atom->extra array to restart the fix
------------------------------------------------------------------------- */
void
FixWallGran
::
unpack_restart
(
int
nlocal
,
int
nth
)
{
double
**
extra
=
atom
->
extra
;
// skip to Nth set of extra values
int
m
=
0
;
for
(
int
i
=
0
;
i
<
nth
;
i
++
)
m
+=
static_cast
<
int
>
(
extra
[
nlocal
][
m
]);
m
++
;
shear
[
nlocal
][
0
]
=
extra
[
nlocal
][
m
++
];
shear
[
nlocal
][
1
]
=
extra
[
nlocal
][
m
++
];
shear
[
nlocal
][
2
]
=
extra
[
nlocal
][
m
++
];
}
/* ----------------------------------------------------------------------
maxsize of any atom's restart data
------------------------------------------------------------------------- */
int
FixWallGran
::
maxsize_restart
()
{
return
4
;
}
/* ----------------------------------------------------------------------
size of atom nlocal's restart data
------------------------------------------------------------------------- */
int
FixWallGran
::
size_restart
(
int
nlocal
)
{
return
4
;
}
/* ---------------------------------------------------------------------- */
void
FixWallGran
::
reset_dt
()
{
dt
=
update
->
dt
;
}
Event Timeline
Log In to Comment