Page MenuHomec4science

dihedral_charmm_kokkos.cpp
No OneTemporary

File Metadata

Created
Sat, Jun 22, 22:47

dihedral_charmm_kokkos.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Stan Moore (SNL)
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include "dihedral_charmm_kokkos.h"
#include "atom_kokkos.h"
#include "comm.h"
#include "neighbor_kokkos.h"
#include "domain.h"
#include "force.h"
#include "pair.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
#include "atom_masks.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define TOLERANCE 0.05
/* ---------------------------------------------------------------------- */
template<class DeviceType>
DihedralCharmmKokkos<DeviceType>::DihedralCharmmKokkos(LAMMPS *lmp) : DihedralCharmm(lmp)
{
atomKK = (AtomKokkos *) atom;
neighborKK = (NeighborKokkos *) neighbor;
execution_space = ExecutionSpaceFromDevice<DeviceType>::space;
datamask_read = X_MASK | F_MASK | Q_MASK | ENERGY_MASK | VIRIAL_MASK | TYPE_MASK;
datamask_modify = F_MASK | ENERGY_MASK | VIRIAL_MASK;
k_warning_flag = Kokkos::DualView<int,DeviceType>("Dihedral:warning_flag");
d_warning_flag = k_warning_flag.template view<DeviceType>();
h_warning_flag = k_warning_flag.h_view;
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
DihedralCharmmKokkos<DeviceType>::~DihedralCharmmKokkos()
{
if (!copymode) {
memory->destroy_kokkos(k_eatom,eatom);
memory->destroy_kokkos(k_vatom,vatom);
}
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void DihedralCharmmKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
{
eflag = eflag_in;
vflag = vflag_in;
if (eflag || vflag) ev_setup(eflag,vflag,0);
else evflag = 0;
// insure pair->ev_tally() will use 1-4 virial contribution
if (weightflag && vflag_global == 2)
force->pair->vflag_either = force->pair->vflag_global = 1;
// reallocate per-atom arrays if necessary
if (eflag_atom) {
//if(k_eatom.dimension_0()<maxeatom) { // won't work without adding zero functor
memory->destroy_kokkos(k_eatom,eatom);
memory->create_kokkos(k_eatom,eatom,maxeatom,"dihedral:eatom");
d_eatom = k_eatom.template view<DeviceType>();
k_eatom_pair = Kokkos::DualView<E_FLOAT*,Kokkos::LayoutRight,DeviceType>("dihedral:eatom_pair",maxeatom);
d_eatom_pair = k_eatom.template view<DeviceType>();
//}
}
if (vflag_atom) {
//if(k_vatom.dimension_0()<maxvatom) { // won't work without adding zero functor
memory->destroy_kokkos(k_vatom,vatom);
memory->create_kokkos(k_vatom,vatom,maxvatom,6,"dihedral:vatom");
d_vatom = k_vatom.template view<DeviceType>();
k_vatom_pair = Kokkos::DualView<F_FLOAT*[6],Kokkos::LayoutRight,DeviceType>("dihedral:vatom_pair",maxvatom);
d_vatom_pair = k_vatom.template view<DeviceType>();
//}
}
x = atomKK->k_x.view<DeviceType>();
f = atomKK->k_f.view<DeviceType>();
q = atomKK->k_q.view<DeviceType>();
atomtype = atomKK->k_type.view<DeviceType>();
neighborKK->k_dihedrallist.template sync<DeviceType>();
dihedrallist = neighborKK->k_dihedrallist.view<DeviceType>();
int ndihedrallist = neighborKK->ndihedrallist;
nlocal = atom->nlocal;
newton_bond = force->newton_bond;
qqrd2e = force->qqrd2e;
h_warning_flag() = 0;
k_warning_flag.template modify<LMPHostType>();
k_warning_flag.template sync<DeviceType>();
copymode = 1;
// loop over neighbors of my atoms
EVM_FLOAT evm;
if (evflag) {
if (newton_bond) {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagDihedralCharmmCompute<1,1> >(0,ndihedrallist),*this,evm);
} else {
Kokkos::parallel_reduce(Kokkos::RangePolicy<DeviceType, TagDihedralCharmmCompute<0,1> >(0,ndihedrallist),*this,evm);
}
} else {
if (newton_bond) {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagDihedralCharmmCompute<1,0> >(0,ndihedrallist),*this);
} else {
Kokkos::parallel_for(Kokkos::RangePolicy<DeviceType, TagDihedralCharmmCompute<0,0> >(0,ndihedrallist),*this);
}
}
DeviceType::fence();
// error check
k_warning_flag.template modify<DeviceType>();
k_warning_flag.template sync<LMPHostType>();
if (h_warning_flag())
error->warning(FLERR,"Dihedral problem",0);
if (eflag_global) {
energy += evm.emol;
force->pair->eng_vdwl += evm.evdwl;
force->pair->eng_coul += evm.ecoul;
}
if (vflag_global) {
virial[0] += evm.v[0];
virial[1] += evm.v[1];
virial[2] += evm.v[2];
virial[3] += evm.v[3];
virial[4] += evm.v[4];
virial[5] += evm.v[5];
force->pair->virial[0] += evm.vp[0];
force->pair->virial[1] += evm.vp[1];
force->pair->virial[2] += evm.vp[2];
force->pair->virial[3] += evm.vp[3];
force->pair->virial[4] += evm.vp[4];
force->pair->virial[5] += evm.vp[5];
}
// don't yet have dualviews for eatom and vatom in pair_kokkos,
// so need to manually copy these to pair style
int n = nlocal;
if (newton_bond) n += atom->nghost;
if (eflag_atom) {
k_eatom.template modify<DeviceType>();
k_eatom.template sync<LMPHostType>();
k_eatom_pair.template modify<DeviceType>();
k_eatom_pair.template sync<LMPHostType>();
for (int i = 0; i < n; i++)
force->pair->eatom[i] += k_eatom_pair.h_view(i);
}
if (vflag_atom) {
k_vatom.template modify<DeviceType>();
k_vatom.template sync<LMPHostType>();
k_vatom_pair.template modify<DeviceType>();
k_vatom_pair.template sync<LMPHostType>();
for (int i = 0; i < n; i++) {
force->pair->vatom[i][0] += k_vatom_pair.h_view(i,0);
force->pair->vatom[i][1] += k_vatom_pair.h_view(i,1);
force->pair->vatom[i][2] += k_vatom_pair.h_view(i,2);
force->pair->vatom[i][3] += k_vatom_pair.h_view(i,3);
force->pair->vatom[i][4] += k_vatom_pair.h_view(i,4);
force->pair->vatom[i][5] += k_vatom_pair.h_view(i,5);
}
}
copymode = 0;
}
template<class DeviceType>
template<int NEWTON_BOND, int EVFLAG>
KOKKOS_INLINE_FUNCTION
void DihedralCharmmKokkos<DeviceType>::operator()(TagDihedralCharmmCompute<NEWTON_BOND,EVFLAG>, const int &n, EVM_FLOAT& evm) const {
// The f array is atomic
Kokkos::View<F_FLOAT*[3], typename DAT::t_f_array::array_layout,DeviceType,Kokkos::MemoryTraits<Kokkos::Atomic|Kokkos::Unmanaged> > a_f = f;
const int i1 = dihedrallist(n,0);
const int i2 = dihedrallist(n,1);
const int i3 = dihedrallist(n,2);
const int i4 = dihedrallist(n,3);
const int type = dihedrallist(n,4);
// 1st bond
const F_FLOAT vb1x = x(i1,0) - x(i2,0);
const F_FLOAT vb1y = x(i1,1) - x(i2,1);
const F_FLOAT vb1z = x(i1,2) - x(i2,2);
// 2nd bond
const F_FLOAT vb2x = x(i3,0) - x(i2,0);
const F_FLOAT vb2y = x(i3,1) - x(i2,1);
const F_FLOAT vb2z = x(i3,2) - x(i2,2);
const F_FLOAT vb2xm = -vb2x;
const F_FLOAT vb2ym = -vb2y;
const F_FLOAT vb2zm = -vb2z;
// 3rd bond
const F_FLOAT vb3x = x(i4,0) - x(i3,0);
const F_FLOAT vb3y = x(i4,1) - x(i3,1);
const F_FLOAT vb3z = x(i4,2) - x(i3,2);
const F_FLOAT ax = vb1y*vb2zm - vb1z*vb2ym;
const F_FLOAT ay = vb1z*vb2xm - vb1x*vb2zm;
const F_FLOAT az = vb1x*vb2ym - vb1y*vb2xm;
const F_FLOAT bx = vb3y*vb2zm - vb3z*vb2ym;
const F_FLOAT by = vb3z*vb2xm - vb3x*vb2zm;
const F_FLOAT bz = vb3x*vb2ym - vb3y*vb2xm;
const F_FLOAT rasq = ax*ax + ay*ay + az*az;
const F_FLOAT rbsq = bx*bx + by*by + bz*bz;
const F_FLOAT rgsq = vb2xm*vb2xm + vb2ym*vb2ym + vb2zm*vb2zm;
const F_FLOAT rg = sqrt(rgsq);
F_FLOAT rginv,ra2inv,rb2inv;
rginv = ra2inv = rb2inv = 0.0;
if (rg > 0) rginv = 1.0/rg;
if (rasq > 0) ra2inv = 1.0/rasq;
if (rbsq > 0) rb2inv = 1.0/rbsq;
const F_FLOAT rabinv = sqrt(ra2inv*rb2inv);
F_FLOAT c = (ax*bx + ay*by + az*bz)*rabinv;
F_FLOAT s = rg*rabinv*(ax*vb3x + ay*vb3y + az*vb3z);
// error check
if ((c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE)) && !d_warning_flag())
Kokkos::atomic_fetch_add(&d_warning_flag(),1);
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
const int m = d_multiplicity[type];
F_FLOAT p = 1.0;
F_FLOAT ddf1,df1;
ddf1 = df1 = 0.0;
for (int i = 0; i < m; i++) {
ddf1 = p*c - df1*s;
df1 = p*s + df1*c;
p = ddf1;
}
p = p*d_cos_shift[type] + df1*d_sin_shift[type];
df1 = df1*d_cos_shift[type] - ddf1*d_sin_shift[type];
df1 *= -m;
p += 1.0;
if (m == 0) {
p = 1.0 + d_cos_shift[type];
df1 = 0.0;
}
E_FLOAT edihedral = 0.0;
if (eflag) edihedral = d_k[type] * p;
const F_FLOAT fg = vb1x*vb2xm + vb1y*vb2ym + vb1z*vb2zm;
const F_FLOAT hg = vb3x*vb2xm + vb3y*vb2ym + vb3z*vb2zm;
const F_FLOAT fga = fg*ra2inv*rginv;
const F_FLOAT hgb = hg*rb2inv*rginv;
const F_FLOAT gaa = -ra2inv*rg;
const F_FLOAT gbb = rb2inv*rg;
const F_FLOAT dtfx = gaa*ax;
const F_FLOAT dtfy = gaa*ay;
const F_FLOAT dtfz = gaa*az;
const F_FLOAT dtgx = fga*ax - hgb*bx;
const F_FLOAT dtgy = fga*ay - hgb*by;
const F_FLOAT dtgz = fga*az - hgb*bz;
const F_FLOAT dthx = gbb*bx;
const F_FLOAT dthy = gbb*by;
const F_FLOAT dthz = gbb*bz;
const F_FLOAT df = -d_k[type] * df1;
const F_FLOAT sx2 = df*dtgx;
const F_FLOAT sy2 = df*dtgy;
const F_FLOAT sz2 = df*dtgz;
F_FLOAT f1[3],f2[3],f3[3],f4[3];
f1[0] = df*dtfx;
f1[1] = df*dtfy;
f1[2] = df*dtfz;
f2[0] = sx2 - f1[0];
f2[1] = sy2 - f1[1];
f2[2] = sz2 - f1[2];
f4[0] = df*dthx;
f4[1] = df*dthy;
f4[2] = df*dthz;
f3[0] = -sx2 - f4[0];
f3[1] = -sy2 - f4[1];
f3[2] = -sz2 - f4[2];
// apply force to each of 4 atoms
if (NEWTON_BOND || i1 < nlocal) {
a_f(i1,0) += f1[0];
a_f(i1,1) += f1[1];
a_f(i1,2) += f1[2];
}
if (NEWTON_BOND || i2 < nlocal) {
a_f(i2,0) += f2[0];
a_f(i2,1) += f2[1];
a_f(i2,2) += f2[2];
}
if (NEWTON_BOND || i3 < nlocal) {
a_f(i3,0) += f3[0];
a_f(i3,1) += f3[1];
a_f(i3,2) += f3[2];
}
if (NEWTON_BOND || i4 < nlocal) {
a_f(i4,0) += f4[0];
a_f(i4,1) += f4[1];
a_f(i4,2) += f4[2];
}
if (EVFLAG)
ev_tally(evm,i1,i2,i3,i4,edihedral,f1,f3,f4,
vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z);
// 1-4 LJ and Coulomb interactions
// tally energy/virial in pair, using newton_bond as newton flag
if (d_weight[type] > 0.0) {
const int itype = atomtype[i1];
const int jtype = atomtype[i4];
const F_FLOAT delx = x(i1,0) - x(i4,0);
const F_FLOAT dely = x(i1,1) - x(i4,1);
const F_FLOAT delz = x(i1,2) - x(i4,2);
const F_FLOAT rsq = delx*delx + dely*dely + delz*delz;
const F_FLOAT r2inv = 1.0/rsq;
const F_FLOAT r6inv = r2inv*r2inv*r2inv;
F_FLOAT forcecoul;
if (implicit) forcecoul = qqrd2e * q[i1]*q[i4]*r2inv;
else forcecoul = qqrd2e * q[i1]*q[i4]*sqrt(r2inv);
const F_FLOAT forcelj = r6inv * (d_lj14_1(itype,jtype)*r6inv - d_lj14_2(itype,jtype));
const F_FLOAT fpair = d_weight[type] * (forcelj+forcecoul)*r2inv;
F_FLOAT ecoul = 0.0;
F_FLOAT evdwl = 0.0;
if (eflag) {
ecoul = d_weight[type] * forcecoul;
evdwl = r6inv * (d_lj14_3(itype,jtype)*r6inv - d_lj14_4(itype,jtype));
evdwl *= d_weight[type];
}
if (newton_bond || i1 < nlocal) {
a_f(i1,0) += delx*fpair;
a_f(i1,1) += dely*fpair;
a_f(i1,2) += delz*fpair;
}
if (newton_bond || i4 < nlocal) {
a_f(i4,0) -= delx*fpair;
a_f(i4,1) -= dely*fpair;
a_f(i4,2) -= delz*fpair;
}
if (EVFLAG) ev_tally(evm,i1,i4,evdwl,ecoul,fpair,delx,dely,delz);
}
}
template<class DeviceType>
template<int NEWTON_BOND, int EVFLAG>
KOKKOS_INLINE_FUNCTION
void DihedralCharmmKokkos<DeviceType>::operator()(TagDihedralCharmmCompute<NEWTON_BOND,EVFLAG>, const int &n) const {
EVM_FLOAT evm;
this->template operator()<NEWTON_BOND,EVFLAG>(TagDihedralCharmmCompute<NEWTON_BOND,EVFLAG>(), n, evm);
}
/* ---------------------------------------------------------------------- */
template<class DeviceType>
void DihedralCharmmKokkos<DeviceType>::allocate()
{
DihedralCharmm::allocate();
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
template<class DeviceType>
void DihedralCharmmKokkos<DeviceType>::coeff(int narg, char **arg)
{
DihedralCharmm::coeff(narg, arg);
int nd = atom->ndihedraltypes;
Kokkos::DualView<F_FLOAT*,DeviceType> k_k("DihedralCharmm::k",nd+1);
Kokkos::DualView<F_FLOAT*,DeviceType> k_multiplicity("DihedralCharmm::multiplicity",nd+1);
Kokkos::DualView<F_FLOAT*,DeviceType> k_shift("DihedralCharmm::shift",nd+1);
Kokkos::DualView<F_FLOAT*,DeviceType> k_cos_shift("DihedralCharmm::cos_shift",nd+1);
Kokkos::DualView<F_FLOAT*,DeviceType> k_sin_shift("DihedralCharmm::sin_shift",nd+1);
Kokkos::DualView<F_FLOAT*,DeviceType> k_weight("DihedralCharmm::weight",nd+1);
d_k = k_k.d_view;
d_multiplicity = k_multiplicity.d_view;
d_shift = k_shift.d_view;
d_cos_shift = k_cos_shift.d_view;
d_sin_shift = k_sin_shift.d_view;
d_weight = k_weight.d_view;
int n = atom->ndihedraltypes;
for (int i = 1; i <= n; i++) {
k_k.h_view[i] = k[i];
k_multiplicity.h_view[i] = multiplicity[i];
k_shift.h_view[i] = shift[i];
k_cos_shift.h_view[i] = cos_shift[i];
k_sin_shift.h_view[i] = sin_shift[i];
k_weight.h_view[i] = weight[i];
}
k_k.template modify<LMPHostType>();
k_multiplicity.template modify<LMPHostType>();
k_shift.template modify<LMPHostType>();
k_cos_shift.template modify<LMPHostType>();
k_sin_shift.template modify<LMPHostType>();
k_weight.template modify<LMPHostType>();
k_k.template sync<DeviceType>();
k_multiplicity.template sync<DeviceType>();
k_shift.template sync<DeviceType>();
k_cos_shift.template sync<DeviceType>();
k_sin_shift.template sync<DeviceType>();
k_weight.template sync<DeviceType>();
}
/* ----------------------------------------------------------------------
error check and initialize all values needed for force computation
------------------------------------------------------------------------- */
template<class DeviceType>
void DihedralCharmmKokkos<DeviceType>::init_style()
{
DihedralCharmm::init_style();
int n = atom->ntypes;
Kokkos::DualView<F_FLOAT**,Kokkos::LayoutRight,DeviceType> k_lj14_1("DihedralCharmm:lj14_1",n+1,n+1);
Kokkos::DualView<F_FLOAT**,Kokkos::LayoutRight,DeviceType> k_lj14_2("DihedralCharmm:lj14_2",n+1,n+1);
Kokkos::DualView<F_FLOAT**,Kokkos::LayoutRight,DeviceType> k_lj14_3("DihedralCharmm:lj14_3",n+1,n+1);
Kokkos::DualView<F_FLOAT**,Kokkos::LayoutRight,DeviceType> k_lj14_4("DihedralCharmm:lj14_4",n+1,n+1);
d_lj14_1 = k_lj14_1.d_view;
d_lj14_2 = k_lj14_2.d_view;
d_lj14_3 = k_lj14_3.d_view;
d_lj14_4 = k_lj14_4.d_view;
if (weightflag) {
int n = atom->ntypes;
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
k_lj14_1.h_view(i,j) = lj14_1[i][j];
k_lj14_2.h_view(i,j) = lj14_2[i][j];
k_lj14_3.h_view(i,j) = lj14_3[i][j];
k_lj14_4.h_view(i,j) = lj14_4[i][j];
}
}
}
k_lj14_1.template modify<LMPHostType>();
k_lj14_2.template modify<LMPHostType>();
k_lj14_3.template modify<LMPHostType>();
k_lj14_4.template modify<LMPHostType>();
k_lj14_1.template sync<DeviceType>();
k_lj14_2.template sync<DeviceType>();
k_lj14_3.template sync<DeviceType>();
k_lj14_4.template sync<DeviceType>();
}
/* ----------------------------------------------------------------------
tally energy and virial into global and per-atom accumulators
virial = r1F1 + r2F2 + r3F3 + r4F4 = (r1-r2) F1 + (r3-r2) F3 + (r4-r2) F4
= (r1-r2) F1 + (r3-r2) F3 + (r4-r3 + r3-r2) F4
= vb1*f1 + vb2*f3 + (vb3+vb2)*f4
------------------------------------------------------------------------- */
template<class DeviceType>
//template<int NEWTON_BOND>
KOKKOS_INLINE_FUNCTION
void DihedralCharmmKokkos<DeviceType>::ev_tally(EVM_FLOAT &evm, const int i1, const int i2, const int i3, const int i4,
F_FLOAT &edihedral, F_FLOAT *f1, F_FLOAT *f3, F_FLOAT *f4,
const F_FLOAT &vb1x, const F_FLOAT &vb1y, const F_FLOAT &vb1z,
const F_FLOAT &vb2x, const F_FLOAT &vb2y, const F_FLOAT &vb2z,
const F_FLOAT &vb3x, const F_FLOAT &vb3y, const F_FLOAT &vb3z) const
{
E_FLOAT edihedralquarter;
F_FLOAT v[6];
if (eflag_either) {
if (eflag_global) {
if (newton_bond) evm.emol += edihedral;
else {
edihedralquarter = 0.25*edihedral;
if (i1 < nlocal) evm.emol += edihedralquarter;
if (i2 < nlocal) evm.emol += edihedralquarter;
if (i3 < nlocal) evm.emol += edihedralquarter;
if (i4 < nlocal) evm.emol += edihedralquarter;
}
}
if (eflag_atom) {
edihedralquarter = 0.25*edihedral;
if (newton_bond || i1 < nlocal) d_eatom[i1] += edihedralquarter;
if (newton_bond || i2 < nlocal) d_eatom[i2] += edihedralquarter;
if (newton_bond || i3 < nlocal) d_eatom[i3] += edihedralquarter;
if (newton_bond || i4 < nlocal) d_eatom[i4] += edihedralquarter;
}
}
if (vflag_either) {
v[0] = vb1x*f1[0] + vb2x*f3[0] + (vb3x+vb2x)*f4[0];
v[1] = vb1y*f1[1] + vb2y*f3[1] + (vb3y+vb2y)*f4[1];
v[2] = vb1z*f1[2] + vb2z*f3[2] + (vb3z+vb2z)*f4[2];
v[3] = vb1x*f1[1] + vb2x*f3[1] + (vb3x+vb2x)*f4[1];
v[4] = vb1x*f1[2] + vb2x*f3[2] + (vb3x+vb2x)*f4[2];
v[5] = vb1y*f1[2] + vb2y*f3[2] + (vb3y+vb2y)*f4[2];
if (vflag_global) {
if (newton_bond) {
evm.v[0] += v[0];
evm.v[1] += v[1];
evm.v[2] += v[2];
evm.v[3] += v[3];
evm.v[4] += v[4];
evm.v[5] += v[5];
} else {
if (i1 < nlocal) {
evm.v[0] += 0.25*v[0];
evm.v[1] += 0.25*v[1];
evm.v[2] += 0.25*v[2];
evm.v[3] += 0.25*v[3];
evm.v[4] += 0.25*v[4];
evm.v[5] += 0.25*v[5];
}
if (i2 < nlocal) {
evm.v[0] += 0.25*v[0];
evm.v[1] += 0.25*v[1];
evm.v[2] += 0.25*v[2];
evm.v[3] += 0.25*v[3];
evm.v[4] += 0.25*v[4];
evm.v[5] += 0.25*v[5];
}
if (i3 < nlocal) {
evm.v[0] += 0.25*v[0];
evm.v[1] += 0.25*v[1];
evm.v[2] += 0.25*v[2];
evm.v[3] += 0.25*v[3];
evm.v[4] += 0.25*v[4];
evm.v[5] += 0.25*v[5];
}
if (i4 < nlocal) {
evm.v[0] += 0.25*v[0];
evm.v[1] += 0.25*v[1];
evm.v[2] += 0.25*v[2];
evm.v[3] += 0.25*v[3];
evm.v[4] += 0.25*v[4];
evm.v[5] += 0.25*v[5];
}
}
}
if (vflag_atom) {
if (newton_bond || i1 < nlocal) {
d_vatom(i1,0) += 0.25*v[0];
d_vatom(i1,1) += 0.25*v[1];
d_vatom(i1,2) += 0.25*v[2];
d_vatom(i1,3) += 0.25*v[3];
d_vatom(i1,4) += 0.25*v[4];
d_vatom(i1,5) += 0.25*v[5];
}
if (newton_bond || i2 < nlocal) {
d_vatom(i2,0) += 0.25*v[0];
d_vatom(i2,1) += 0.25*v[1];
d_vatom(i2,2) += 0.25*v[2];
d_vatom(i2,3) += 0.25*v[3];
d_vatom(i2,4) += 0.25*v[4];
d_vatom(i2,5) += 0.25*v[5];
}
if (newton_bond || i3 < nlocal) {
d_vatom(i3,0) += 0.25*v[0];
d_vatom(i3,1) += 0.25*v[1];
d_vatom(i3,2) += 0.25*v[2];
d_vatom(i3,3) += 0.25*v[3];
d_vatom(i3,4) += 0.25*v[4];
d_vatom(i3,5) += 0.25*v[5];
}
if (newton_bond || i4 < nlocal) {
d_vatom(i4,0) += 0.25*v[0];
d_vatom(i4,1) += 0.25*v[1];
d_vatom(i4,2) += 0.25*v[2];
d_vatom(i4,3) += 0.25*v[3];
d_vatom(i4,4) += 0.25*v[4];
d_vatom(i4,5) += 0.25*v[5];
}
}
}
}
/* ----------------------------------------------------------------------
tally eng_vdwl and virial into global and per-atom accumulators
need i < nlocal test since called by bond_quartic and dihedral_charmm
------------------------------------------------------------------------- */
template<class DeviceType>
KOKKOS_INLINE_FUNCTION
void DihedralCharmmKokkos<DeviceType>::ev_tally(EVM_FLOAT &evm, const int i, const int j,
const F_FLOAT &evdwl, const F_FLOAT &ecoul, const F_FLOAT &fpair, const F_FLOAT &delx,
const F_FLOAT &dely, const F_FLOAT &delz) const
{
E_FLOAT evdwlhalf,ecoulhalf,epairhalf;
F_FLOAT v[6];
if (eflag_either) {
if (eflag_global) {
if (newton_bond) {
evm.evdwl += evdwl;
evm.ecoul += ecoul;
} else {
evdwlhalf = 0.5*evdwl;
ecoulhalf = 0.5*ecoul;
if (i < nlocal) {
evm.evdwl += evdwlhalf;
evm.ecoul += ecoulhalf;
}
if (j < nlocal) {
evm.evdwl += evdwlhalf;
evm.ecoul += ecoulhalf;
}
}
}
if (eflag_atom) {
epairhalf = 0.5 * (evdwl + ecoul);
if (newton_bond || i < nlocal) d_eatom_pair[i] += epairhalf;
if (newton_bond || j < nlocal) d_eatom_pair[j] += epairhalf;
}
}
if (vflag_either) {
v[0] = delx*delx*fpair;
v[1] = dely*dely*fpair;
v[2] = delz*delz*fpair;
v[3] = delx*dely*fpair;
v[4] = delx*delz*fpair;
v[5] = dely*delz*fpair;
if (vflag_global) {
if (newton_bond) {
evm.vp[0] += v[0];
evm.vp[1] += v[1];
evm.vp[2] += v[2];
evm.vp[3] += v[3];
evm.vp[4] += v[4];
evm.vp[5] += v[5];
} else {
if (i < nlocal) {
evm.vp[0] += 0.5*v[0];
evm.vp[1] += 0.5*v[1];
evm.vp[2] += 0.5*v[2];
evm.vp[3] += 0.5*v[3];
evm.vp[4] += 0.5*v[4];
evm.vp[5] += 0.5*v[5];
}
if (j < nlocal) {
evm.vp[0] += 0.5*v[0];
evm.vp[1] += 0.5*v[1];
evm.vp[2] += 0.5*v[2];
evm.vp[3] += 0.5*v[3];
evm.vp[4] += 0.5*v[4];
evm.vp[5] += 0.5*v[5];
}
}
}
if (vflag_atom) {
if (newton_bond || i < nlocal) {
d_vatom_pair(i,0) += 0.5*v[0];
d_vatom_pair(i,1) += 0.5*v[1];
d_vatom_pair(i,2) += 0.5*v[2];
d_vatom_pair(i,3) += 0.5*v[3];
d_vatom_pair(i,4) += 0.5*v[4];
d_vatom_pair(i,5) += 0.5*v[5];
}
if (newton_bond || j < nlocal) {
d_vatom_pair(j,0) += 0.5*v[0];
d_vatom_pair(j,1) += 0.5*v[1];
d_vatom_pair(j,2) += 0.5*v[2];
d_vatom_pair(j,3) += 0.5*v[3];
d_vatom_pair(j,4) += 0.5*v[4];
d_vatom_pair(j,5) += 0.5*v[5];
}
}
}
}
/* ---------------------------------------------------------------------- */
namespace LAMMPS_NS {
template class DihedralCharmmKokkos<LMPDeviceType>;
#ifdef KOKKOS_HAVE_CUDA
template class DihedralCharmmKokkos<LMPHostType>;
#endif
}

Event Timeline