Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91111753
pair_python.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 8, 00:52
Size
13 KB
Mime Type
text/x-c
Expires
Sun, Nov 10, 00:52 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22198770
Attached To
rLAMMPS lammps
pair_python.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Axel Kohlmeyer and Richard Berger (Temple U)
------------------------------------------------------------------------- */
#include <Python.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pair_python.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "memory.h"
#include "update.h"
#include "neigh_list.h"
#include "python.h"
#include "error.h"
#include "python_compat.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
PairPython::PairPython(LAMMPS *lmp) : Pair(lmp) {
respa_enable = 0;
single_enable = 1;
writedata = 0;
restartinfo = 0;
one_coeff = 1;
reinitflag = 0;
cut_global = 0.0;
py_potential = NULL;
skip_types = NULL;
python->init();
// add current directory to PYTHONPATH
PyObject * py_path = PySys_GetObject((char *)"path");
PyList_Append(py_path, PY_STRING_FROM_STRING("."));
// if LAMMPS_POTENTIALS environment variable is set, add it to PYTHONPATH as well
const char * potentials_path = getenv("LAMMPS_POTENTIALS");
if (potentials_path != NULL) {
PyList_Append(py_path, PY_STRING_FROM_STRING(potentials_path));
}
}
/* ---------------------------------------------------------------------- */
PairPython::~PairPython()
{
if (py_potential) Py_DECREF((PyObject*) py_potential);
delete[] skip_types;
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
}
}
/* ---------------------------------------------------------------------- */
void PairPython::compute(int eflag, int vflag)
{
int i,j,ii,jj,inum,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
double rsq,factor_lj;
int *ilist,*jlist,*numneigh,**firstneigh;
evdwl = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = vflag_fdotr = 0;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_lj = force->special_lj;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// prepare access to compute_force and compute_energy functions
PyGILState_STATE gstate = PyGILState_Ensure();
PyObject *py_pair_instance = (PyObject *) py_potential;
PyObject *py_compute_force = PyObject_GetAttrString(py_pair_instance,"compute_force");
if (!py_compute_force) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not find 'compute_force' method'");
}
if (!PyCallable_Check(py_compute_force)) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Python 'compute_force' is not callable");
}
PyObject *py_compute_energy = PyObject_GetAttrString(py_pair_instance,"compute_energy");
if (!py_compute_energy) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not find 'compute_energy' method'");
}
if (!PyCallable_Check(py_compute_energy)) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Python 'compute_energy' is not callable");
}
PyObject *py_compute_args = PyTuple_New(3);
if (!py_compute_args) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not create tuple for 'compute' function arguments");
}
PyObject *py_rsq, *py_itype, *py_jtype, *py_value;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
py_itype = PY_INT_FROM_LONG(itype);
PyTuple_SetItem(py_compute_args,1,py_itype);
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
// with hybrid/overlay we might get called for skipped types
if (skip_types[itype] || skip_types[jtype]) continue;
py_jtype = PY_INT_FROM_LONG(jtype);
PyTuple_SetItem(py_compute_args,2,py_jtype);
if (rsq < cutsq[itype][jtype]) {
py_rsq = PyFloat_FromDouble(rsq);
PyTuple_SetItem(py_compute_args,0,py_rsq);
py_value = PyObject_CallObject(py_compute_force,py_compute_args);
if (!py_value) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Calling 'compute_force' function failed");
}
fpair = factor_lj*PyFloat_AsDouble(py_value);
f[i][0] += delx*fpair;
f[i][1] += dely*fpair;
f[i][2] += delz*fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx*fpair;
f[j][1] -= dely*fpair;
f[j][2] -= delz*fpair;
}
if (eflag) {
py_value = PyObject_CallObject(py_compute_energy,py_compute_args);
evdwl = factor_lj*PyFloat_AsDouble(py_value);
} else evdwl = 0.0;
if (evflag) ev_tally(i,j,nlocal,newton_pair,
evdwl,0.0,fpair,delx,dely,delz);
}
}
}
Py_DECREF(py_compute_args);
PyGILState_Release(gstate);
if (vflag_fdotr) virial_fdotr_compute();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairPython::allocate()
{
allocated = 1;
int n = atom->ntypes;
memory->create(setflag,n+1,n+1,"pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
memory->create(cutsq,n+1,n+1,"pair:cutsq");
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairPython::settings(int narg, char **arg)
{
if (narg != 1)
error->all(FLERR,"Illegal pair_style command");
cut_global = force->numeric(FLERR,arg[0]);
}
/* ----------------------------------------------------------------------
set coeffs for all type pairs
------------------------------------------------------------------------- */
void PairPython::coeff(int narg, char **arg)
{
const int ntypes = atom->ntypes;
if (narg != 3+ntypes)
error->all(FLERR,"Incorrect args for pair coefficients");
if (!allocated) allocate();
// make sure I,J args are * *
if (strcmp(arg[0],"*") != 0 || strcmp(arg[1],"*") != 0)
error->all(FLERR,"Incorrect args for pair coefficients");
// check if python potential file exists and source it
char * full_cls_name = arg[2];
char * lastpos = strrchr(full_cls_name, '.');
if (lastpos == NULL) {
error->all(FLERR,"Python pair style requires fully qualified class name");
}
size_t module_name_length = strlen(full_cls_name) - strlen(lastpos);
size_t cls_name_length = strlen(lastpos)-1;
char * module_name = new char[module_name_length+1];
char * cls_name = new char[cls_name_length+1];
strncpy(module_name, full_cls_name, module_name_length);
module_name[module_name_length] = 0;
strcpy(cls_name, lastpos+1);
PyGILState_STATE gstate = PyGILState_Ensure();
PyObject * pModule = PyImport_ImportModule(module_name);
if (!pModule) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Loading python pair style module failure");
}
// create LAMMPS atom type to potential file type mapping in python class
// by calling 'lammps_pair_style.map_coeff(name,type)'
PyObject *py_pair_type = PyObject_GetAttrString(pModule, cls_name);
if (!py_pair_type) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not find pair style class in module'");
}
delete [] module_name;
delete [] cls_name;
PyObject * py_pair_instance = PyObject_CallObject(py_pair_type, NULL);
if (!py_pair_instance) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not instantiate instance of pair style class'");
}
py_potential = (void *) py_pair_instance;
PyObject *py_check_units = PyObject_GetAttrString(py_pair_instance,"check_units");
if (!py_check_units) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not find 'check_units' method'");
}
if (!PyCallable_Check(py_check_units)) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Python 'check_units' is not callable");
}
PyObject *py_units_args = PyTuple_New(1);
if (!py_units_args) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not create tuple for 'check_units' function arguments");
}
PyObject *py_name = PY_STRING_FROM_STRING(update->unit_style);
PyTuple_SetItem(py_units_args,0,py_name);
PyObject *py_value = PyObject_CallObject(py_check_units,py_units_args);
if (!py_value) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Calling 'check_units' function failed");
}
Py_DECREF(py_units_args);
PyObject *py_map_coeff = PyObject_GetAttrString(py_pair_instance,"map_coeff");
if (!py_map_coeff) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not find 'map_coeff' method'");
}
if (!PyCallable_Check(py_map_coeff)) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Python 'map_coeff' is not callable");
}
PyObject *py_map_args = PyTuple_New(2);
if (!py_map_args) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not create tuple for 'map_coeff' function arguments");
}
delete[] skip_types;
skip_types = new int[ntypes+1];
skip_types[0] = 1;
for (int i = 1; i <= ntypes ; i++) {
if (strcmp(arg[2+i],"NULL") == 0) {
skip_types[i] = 1;
continue;
} else skip_types[i] = 0;
PyObject *py_type = PY_INT_FROM_LONG(i);
py_name = PY_STRING_FROM_STRING(arg[2+i]);
PyTuple_SetItem(py_map_args,0,py_name);
PyTuple_SetItem(py_map_args,1,py_type);
py_value = PyObject_CallObject(py_map_coeff,py_map_args);
if (!py_value) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Calling 'map_coeff' function failed");
}
for (int j = i; j <= ntypes ; j++) {
setflag[i][j] = 1;
cutsq[i][j] = cut_global*cut_global;
}
}
Py_DECREF(py_map_args);
PyGILState_Release(gstate);
}
/* ---------------------------------------------------------------------- */
double PairPython::init_one(int, int)
{
return cut_global;
}
/* ---------------------------------------------------------------------- */
double PairPython::single(int i, int j, int itype, int jtype, double rsq,
double factor_coul, double factor_lj,
double &fforce)
{
// with hybrid/overlay we might get called for skipped types
if (skip_types[itype] || skip_types[jtype]) {
fforce = 0.0;
return 0.0;
}
// prepare access to compute_force and compute_energy functions
PyGILState_STATE gstate = PyGILState_Ensure();
PyObject *py_pair_instance = (PyObject *) py_potential;
PyObject *py_compute_force
= PyObject_GetAttrString(py_pair_instance,"compute_force");
if (!py_compute_force) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not find 'compute_force' method'");
}
if (!PyCallable_Check(py_compute_force)) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Python 'compute_force' is not callable");
}
PyObject *py_compute_energy
= PyObject_GetAttrString(py_pair_instance,"compute_energy");
if (!py_compute_energy) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not find 'compute_energy' method'");
}
if (!PyCallable_Check(py_compute_energy)) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Python 'compute_energy' is not callable");
}
PyObject *py_rsq, *py_itype, *py_jtype, *py_value;
PyObject *py_compute_args = PyTuple_New(3);
if (!py_compute_args) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Could not create tuple for 'compute' function arguments");
}
py_itype = PY_INT_FROM_LONG(itype);
PyTuple_SetItem(py_compute_args,1,py_itype);
py_jtype = PY_INT_FROM_LONG(jtype);
PyTuple_SetItem(py_compute_args,2,py_jtype);
py_rsq = PyFloat_FromDouble(rsq);
PyTuple_SetItem(py_compute_args,0,py_rsq);
py_value = PyObject_CallObject(py_compute_force,py_compute_args);
if (!py_value) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Calling 'compute_force' function failed");
}
fforce = factor_lj*PyFloat_AsDouble(py_value);
py_value = PyObject_CallObject(py_compute_energy,py_compute_args);
if (!py_value) {
PyErr_Print();
PyErr_Clear();
PyGILState_Release(gstate);
error->all(FLERR,"Calling 'compute_energy' function failed");
}
double evdwl = factor_lj*PyFloat_AsDouble(py_value);
Py_DECREF(py_compute_args);
PyGILState_Release(gstate);
return evdwl;
}
Event Timeline
Log In to Comment