Page MenuHomec4science

angle_fourier_simple.cpp
No OneTemporary

File Metadata

Created
Thu, Nov 7, 07:48

angle_fourier_simple.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Loukas D. Peristeras (Scienomics SARL)
[ based on angle_cosine_squared.cpp Naveen Michaud-Agrawal (Johns Hopkins U)]
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include "angle_fourier_simple.h"
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define SMALL 0.001
/* ---------------------------------------------------------------------- */
AngleFourierSimple::AngleFourierSimple(LAMMPS *lmp) : Angle(lmp) {}
/* ---------------------------------------------------------------------- */
AngleFourierSimple::~AngleFourierSimple()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(k);
memory->destroy(C);
memory->destroy(N);
}
}
/* ---------------------------------------------------------------------- */
void AngleFourierSimple::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type;
double delx1,dely1,delz1,delx2,dely2,delz2;
double eangle,f1[3],f3[3];
double term,sgn;
double rsq1,rsq2,r1,r2,c,cn,th,nth,a,a11,a12,a22;
eangle = 0.0;
if (eflag || vflag) ev_setup(eflag,vflag);
else evflag = 0;
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
// force & energy
th = acos(c);
nth = N[type]*acos(c);
cn = cos(nth);
term = k[type]*(1.0+C[type]*cn);
if (eflag) eangle = term;
// handle sin(n th)/sin(th) singulatiries
if ( fabs(c)-1.0 > 0.0001 ) {
a = k[type]*C[type]*N[type]*sin(nth)/sin(th);
} else {
if ( c >= 0.0 ) {
term = 1.0 - c;
sgn = 1.0;
} else {
term = 1.0 + c;
sgn = ( fmodf((float)(N[type]),2.0) == 0.0f )?-1.0:1.0;
}
a = N[type]+N[type]*(1.0-N[type]*N[type])*term/3.0;
a = k[type]*C[type]*N[type]*(double)(sgn)*a;
}
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
f1[0] = a11*delx1 + a12*delx2;
f1[1] = a11*dely1 + a12*dely2;
f1[2] = a11*delz1 + a12*delz2;
f3[0] = a22*delx2 + a12*delx1;
f3[1] = a22*dely2 + a12*dely1;
f3[2] = a22*delz2 + a12*delz1;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
}
}
/* ---------------------------------------------------------------------- */
void AngleFourierSimple::allocate()
{
allocated = 1;
int n = atom->nangletypes;
memory->create(k,n+1,"angle:k");
memory->create(C,n+1,"angle:C");
memory->create(N,n+1,"angle:N");
memory->create(setflag,n+1,"angle:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
void AngleFourierSimple::coeff(int narg, char **arg)
{
if (narg != 4) error->all(FLERR,"Incorrect args for angle coefficients");
if (!allocated) allocate();
int ilo,ihi;
force->bounds(FLERR,arg[0],atom->nangletypes,ilo,ihi);
double k_one = force->numeric(FLERR,arg[1]);
double C_one = force->numeric(FLERR,arg[2]);
double N_one = force->numeric(FLERR,arg[3]);
int count = 0;
for (int i = ilo; i <= ihi; i++) {
k[i] = k_one;
C[i] = C_one;
N[i] = N_one;
setflag[i] = 1;
count++;
}
if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
}
/* ---------------------------------------------------------------------- */
double AngleFourierSimple::equilibrium_angle(int i)
{
return (MY_PI/N[i]);
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleFourierSimple::write_restart(FILE *fp)
{
fwrite(&k[1],sizeof(double),atom->nangletypes,fp);
fwrite(&C[1],sizeof(double),atom->nangletypes,fp);
fwrite(&N[1],sizeof(double),atom->nangletypes,fp);
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleFourierSimple::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
fread(&k[1],sizeof(double),atom->nangletypes,fp);
fread(&C[1],sizeof(double),atom->nangletypes,fp);
fread(&N[1],sizeof(double),atom->nangletypes,fp);
}
MPI_Bcast(&k[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&C[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&N[1],atom->nangletypes,MPI_DOUBLE,0,world);
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void AngleFourierSimple::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nangletypes; i++)
fprintf(fp,"%d %g %g %g\n",i,k[i],C[i],N[i]);
}
/* ---------------------------------------------------------------------- */
double AngleFourierSimple::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double cn = cos(N[type]*acos(c));
double eng = k[type]*(1.0+C[type]*cn);
return eng;
}

Event Timeline