Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90734763
dihedral_class2_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 07:04
Size
14 KB
Mime Type
text/x-c++
Expires
Wed, Nov 6, 07:04 (2 d)
Engine
blob
Format
Raw Data
Handle
22126591
Attached To
rLAMMPS lammps
dihedral_class2_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include "lmptype.h"
#include "mpi.h"
#include "math.h"
#include "dihedral_class2_omp.h"
#include "atom.h"
#include "comm.h"
#include "neighbor.h"
#include "domain.h"
#include "force.h"
#include "update.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
#define TOLERANCE 0.05
#define SMALL 0.0000001
/* ---------------------------------------------------------------------- */
void
DihedralClass2OMP
::
compute
(
int
eflag
,
int
vflag
)
{
if
(
eflag
||
vflag
)
{
ev_setup
(
eflag
,
vflag
);
ev_setup_thr
(
this
);
}
else
evflag
=
0
;
const
int
nall
=
atom
->
nlocal
+
atom
->
nghost
;
const
int
nthreads
=
comm
->
nthreads
;
const
int
inum
=
neighbor
->
ndihedrallist
;
#if defined(_OPENMP)
#pragma omp parallel default(shared)
#endif
{
int
ifrom
,
ito
,
tid
;
double
**
f
;
f
=
loop_setup_thr
(
atom
->
f
,
ifrom
,
ito
,
tid
,
inum
,
nall
,
nthreads
);
if
(
evflag
)
{
if
(
eflag
)
{
if
(
force
->
newton_bond
)
eval
<
1
,
1
,
1
>
(
f
,
ifrom
,
ito
,
tid
);
else
eval
<
1
,
1
,
0
>
(
f
,
ifrom
,
ito
,
tid
);
}
else
{
if
(
force
->
newton_bond
)
eval
<
1
,
0
,
1
>
(
f
,
ifrom
,
ito
,
tid
);
else
eval
<
1
,
0
,
0
>
(
f
,
ifrom
,
ito
,
tid
);
}
}
else
{
if
(
force
->
newton_bond
)
eval
<
0
,
0
,
1
>
(
f
,
ifrom
,
ito
,
tid
);
else
eval
<
0
,
0
,
0
>
(
f
,
ifrom
,
ito
,
tid
);
}
// reduce per thread forces into global force array.
data_reduce_thr
(
&
(
atom
->
f
[
0
][
0
]),
nall
,
nthreads
,
3
,
tid
);
}
// end of omp parallel region
// reduce per thread energy and virial, if requested.
if
(
evflag
)
ev_reduce_thr
(
this
);
}
template
<
int
EVFLAG
,
int
EFLAG
,
int
NEWTON_BOND
>
void
DihedralClass2OMP
::
eval
(
double
**
f
,
int
nfrom
,
int
nto
,
int
tid
)
{
int
i1
,
i2
,
i3
,
i4
,
i
,
j
,
k
,
n
,
type
;
double
vb1x
,
vb1y
,
vb1z
,
vb2x
,
vb2y
,
vb2z
,
vb3x
,
vb3y
,
vb3z
,
vb2xm
,
vb2ym
,
vb2zm
;
double
edihedral
;
double
r1mag2
,
r1
,
r2mag2
,
r2
,
r3mag2
,
r3
;
double
sb1
,
rb1
,
sb2
,
rb2
,
sb3
,
rb3
,
c0
,
r12c1
;
double
r12c2
,
costh12
,
costh13
,
costh23
,
sc1
,
sc2
,
s1
,
s2
,
c
;
double
cosphi
,
phi
,
sinphi
,
a11
,
a22
,
a33
,
a12
,
a13
,
a23
,
sx1
,
sx2
;
double
sx12
,
sy1
,
sy2
,
sy12
,
sz1
,
sz2
,
sz12
,
dphi1
,
dphi2
,
dphi3
;
double
de_dihedral
,
t1
,
t2
,
t3
,
t4
,
cos2phi
,
cos3phi
,
bt1
,
bt2
;
double
bt3
,
sumbte
,
db
,
sumbtf
,
at1
,
at2
,
at3
,
da
,
da1
,
da2
,
r1_0
;
double
r3_0
,
dr1
,
dr2
,
tk1
,
tk2
,
s12
,
sin2
;
double
dcosphidr
[
4
][
3
],
dphidr
[
4
][
3
],
dbonddr
[
3
][
4
][
3
],
dthetadr
[
2
][
4
][
3
];
double
fabcd
[
4
][
3
];
edihedral
=
0.0
;
double
**
x
=
atom
->
x
;
int
**
dihedrallist
=
neighbor
->
dihedrallist
;
int
nlocal
=
atom
->
nlocal
;
for
(
n
=
nfrom
;
n
<
nto
;
n
++
)
{
i1
=
dihedrallist
[
n
][
0
];
i2
=
dihedrallist
[
n
][
1
];
i3
=
dihedrallist
[
n
][
2
];
i4
=
dihedrallist
[
n
][
3
];
type
=
dihedrallist
[
n
][
4
];
// 1st bond
vb1x
=
x
[
i1
][
0
]
-
x
[
i2
][
0
];
vb1y
=
x
[
i1
][
1
]
-
x
[
i2
][
1
];
vb1z
=
x
[
i1
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
vb1x
,
vb1y
,
vb1z
);
// 2nd bond
vb2x
=
x
[
i3
][
0
]
-
x
[
i2
][
0
];
vb2y
=
x
[
i3
][
1
]
-
x
[
i2
][
1
];
vb2z
=
x
[
i3
][
2
]
-
x
[
i2
][
2
];
domain
->
minimum_image
(
vb2x
,
vb2y
,
vb2z
);
vb2xm
=
-
vb2x
;
vb2ym
=
-
vb2y
;
vb2zm
=
-
vb2z
;
domain
->
minimum_image
(
vb2xm
,
vb2ym
,
vb2zm
);
// 3rd bond
vb3x
=
x
[
i4
][
0
]
-
x
[
i3
][
0
];
vb3y
=
x
[
i4
][
1
]
-
x
[
i3
][
1
];
vb3z
=
x
[
i4
][
2
]
-
x
[
i3
][
2
];
domain
->
minimum_image
(
vb3x
,
vb3y
,
vb3z
);
// distances
r1mag2
=
vb1x
*
vb1x
+
vb1y
*
vb1y
+
vb1z
*
vb1z
;
r1
=
sqrt
(
r1mag2
);
r2mag2
=
vb2x
*
vb2x
+
vb2y
*
vb2y
+
vb2z
*
vb2z
;
r2
=
sqrt
(
r2mag2
);
r3mag2
=
vb3x
*
vb3x
+
vb3y
*
vb3y
+
vb3z
*
vb3z
;
r3
=
sqrt
(
r3mag2
);
sb1
=
1.0
/
r1mag2
;
rb1
=
1.0
/
r1
;
sb2
=
1.0
/
r2mag2
;
rb2
=
1.0
/
r2
;
sb3
=
1.0
/
r3mag2
;
rb3
=
1.0
/
r3
;
c0
=
(
vb1x
*
vb3x
+
vb1y
*
vb3y
+
vb1z
*
vb3z
)
*
rb1
*
rb3
;
// angles
r12c1
=
rb1
*
rb2
;
r12c2
=
rb2
*
rb3
;
costh12
=
(
vb1x
*
vb2x
+
vb1y
*
vb2y
+
vb1z
*
vb2z
)
*
r12c1
;
costh13
=
c0
;
costh23
=
(
vb2xm
*
vb3x
+
vb2ym
*
vb3y
+
vb2zm
*
vb3z
)
*
r12c2
;
// cos and sin of 2 angles and final c
sin2
=
MAX
(
1.0
-
costh12
*
costh12
,
0.0
);
sc1
=
sqrt
(
sin2
);
if
(
sc1
<
SMALL
)
sc1
=
SMALL
;
sc1
=
1.0
/
sc1
;
sin2
=
MAX
(
1.0
-
costh23
*
costh23
,
0.0
);
sc2
=
sqrt
(
sin2
);
if
(
sc2
<
SMALL
)
sc2
=
SMALL
;
sc2
=
1.0
/
sc2
;
s1
=
sc1
*
sc1
;
s2
=
sc2
*
sc2
;
s12
=
sc1
*
sc2
;
c
=
(
c0
+
costh12
*
costh23
)
*
s12
;
// error check
if
(
c
>
1.0
+
TOLERANCE
||
c
<
(
-
1.0
-
TOLERANCE
))
{
int
me
;
MPI_Comm_rank
(
world
,
&
me
);
if
(
screen
)
{
char
str
[
128
];
sprintf
(
str
,
"Dihedral problem: %d "
BIGINT_FORMAT
" %d %d %d %d"
,
me
,
update
->
ntimestep
,
atom
->
tag
[
i1
],
atom
->
tag
[
i2
],
atom
->
tag
[
i3
],
atom
->
tag
[
i4
]);
error
->
warning
(
FLERR
,
str
,
0
);
fprintf
(
screen
,
" 1st atom: %d %g %g %g
\n
"
,
me
,
x
[
i1
][
0
],
x
[
i1
][
1
],
x
[
i1
][
2
]);
fprintf
(
screen
,
" 2nd atom: %d %g %g %g
\n
"
,
me
,
x
[
i2
][
0
],
x
[
i2
][
1
],
x
[
i2
][
2
]);
fprintf
(
screen
,
" 3rd atom: %d %g %g %g
\n
"
,
me
,
x
[
i3
][
0
],
x
[
i3
][
1
],
x
[
i3
][
2
]);
fprintf
(
screen
,
" 4th atom: %d %g %g %g
\n
"
,
me
,
x
[
i4
][
0
],
x
[
i4
][
1
],
x
[
i4
][
2
]);
}
}
if
(
c
>
1.0
)
c
=
1.0
;
if
(
c
<
-
1.0
)
c
=
-
1.0
;
cosphi
=
c
;
phi
=
acos
(
c
);
sinphi
=
sqrt
(
1.0
-
c
*
c
);
sinphi
=
MAX
(
sinphi
,
SMALL
);
a11
=
-
c
*
sb1
*
s1
;
a22
=
sb2
*
(
2.0
*
costh13
*
s12
-
c
*
(
s1
+
s2
));
a33
=
-
c
*
sb3
*
s2
;
a12
=
r12c1
*
(
costh12
*
c
*
s1
+
costh23
*
s12
);
a13
=
rb1
*
rb3
*
s12
;
a23
=
r12c2
*
(
-
costh23
*
c
*
s2
-
costh12
*
s12
);
sx1
=
a11
*
vb1x
+
a12
*
vb2x
+
a13
*
vb3x
;
sx2
=
a12
*
vb1x
+
a22
*
vb2x
+
a23
*
vb3x
;
sx12
=
a13
*
vb1x
+
a23
*
vb2x
+
a33
*
vb3x
;
sy1
=
a11
*
vb1y
+
a12
*
vb2y
+
a13
*
vb3y
;
sy2
=
a12
*
vb1y
+
a22
*
vb2y
+
a23
*
vb3y
;
sy12
=
a13
*
vb1y
+
a23
*
vb2y
+
a33
*
vb3y
;
sz1
=
a11
*
vb1z
+
a12
*
vb2z
+
a13
*
vb3z
;
sz2
=
a12
*
vb1z
+
a22
*
vb2z
+
a23
*
vb3z
;
sz12
=
a13
*
vb1z
+
a23
*
vb2z
+
a33
*
vb3z
;
// set up d(cos(phi))/d(r) and dphi/dr arrays
dcosphidr
[
0
][
0
]
=
-
sx1
;
dcosphidr
[
0
][
1
]
=
-
sy1
;
dcosphidr
[
0
][
2
]
=
-
sz1
;
dcosphidr
[
1
][
0
]
=
sx2
+
sx1
;
dcosphidr
[
1
][
1
]
=
sy2
+
sy1
;
dcosphidr
[
1
][
2
]
=
sz2
+
sz1
;
dcosphidr
[
2
][
0
]
=
sx12
-
sx2
;
dcosphidr
[
2
][
1
]
=
sy12
-
sy2
;
dcosphidr
[
2
][
2
]
=
sz12
-
sz2
;
dcosphidr
[
3
][
0
]
=
-
sx12
;
dcosphidr
[
3
][
1
]
=
-
sy12
;
dcosphidr
[
3
][
2
]
=
-
sz12
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
dphidr
[
i
][
j
]
=
-
dcosphidr
[
i
][
j
]
/
sinphi
;
// energy
dphi1
=
phi
-
phi1
[
type
];
dphi2
=
2.0
*
phi
-
phi2
[
type
];
dphi3
=
3.0
*
phi
-
phi3
[
type
];
if
(
EFLAG
)
edihedral
=
k1
[
type
]
*
(
1.0
-
cos
(
dphi1
))
+
k2
[
type
]
*
(
1.0
-
cos
(
dphi2
))
+
k3
[
type
]
*
(
1.0
-
cos
(
dphi3
));
de_dihedral
=
k1
[
type
]
*
sin
(
dphi1
)
+
2.0
*
k2
[
type
]
*
sin
(
dphi2
)
+
3.0
*
k3
[
type
]
*
sin
(
dphi3
);
// torsion forces on all 4 atoms
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
=
de_dihedral
*
dphidr
[
i
][
j
];
// set up d(bond)/d(r) array
// dbonddr(i,j,k) = bond i, atom j, coordinate k
for
(
i
=
0
;
i
<
3
;
i
++
)
for
(
j
=
0
;
j
<
4
;
j
++
)
for
(
k
=
0
;
k
<
3
;
k
++
)
dbonddr
[
i
][
j
][
k
]
=
0.0
;
// bond1
dbonddr
[
0
][
0
][
0
]
=
vb1x
/
r1
;
dbonddr
[
0
][
0
][
1
]
=
vb1y
/
r1
;
dbonddr
[
0
][
0
][
2
]
=
vb1z
/
r1
;
dbonddr
[
0
][
1
][
0
]
=
-
vb1x
/
r1
;
dbonddr
[
0
][
1
][
1
]
=
-
vb1y
/
r1
;
dbonddr
[
0
][
1
][
2
]
=
-
vb1z
/
r1
;
// bond2
dbonddr
[
1
][
1
][
0
]
=
vb2x
/
r2
;
dbonddr
[
1
][
1
][
1
]
=
vb2y
/
r2
;
dbonddr
[
1
][
1
][
2
]
=
vb2z
/
r2
;
dbonddr
[
1
][
2
][
0
]
=
-
vb2x
/
r2
;
dbonddr
[
1
][
2
][
1
]
=
-
vb2y
/
r2
;
dbonddr
[
1
][
2
][
2
]
=
-
vb2z
/
r2
;
// bond3
dbonddr
[
2
][
2
][
0
]
=
vb3x
/
r3
;
dbonddr
[
2
][
2
][
1
]
=
vb3y
/
r3
;
dbonddr
[
2
][
2
][
2
]
=
vb3z
/
r3
;
dbonddr
[
2
][
3
][
0
]
=
-
vb3x
/
r3
;
dbonddr
[
2
][
3
][
1
]
=
-
vb3y
/
r3
;
dbonddr
[
2
][
3
][
2
]
=
-
vb3z
/
r3
;
// set up d(theta)/d(r) array
// dthetadr(i,j,k) = angle i, atom j, coordinate k
for
(
i
=
0
;
i
<
2
;
i
++
)
for
(
j
=
0
;
j
<
4
;
j
++
)
for
(
k
=
0
;
k
<
3
;
k
++
)
dthetadr
[
i
][
j
][
k
]
=
0.0
;
t1
=
costh12
/
r1mag2
;
t2
=
costh23
/
r2mag2
;
t3
=
costh12
/
r2mag2
;
t4
=
costh23
/
r3mag2
;
// angle12
dthetadr
[
0
][
0
][
0
]
=
sc1
*
((
t1
*
vb1x
)
-
(
vb2x
*
r12c1
));
dthetadr
[
0
][
0
][
1
]
=
sc1
*
((
t1
*
vb1y
)
-
(
vb2y
*
r12c1
));
dthetadr
[
0
][
0
][
2
]
=
sc1
*
((
t1
*
vb1z
)
-
(
vb2z
*
r12c1
));
dthetadr
[
0
][
1
][
0
]
=
sc1
*
((
-
t1
*
vb1x
)
+
(
vb2x
*
r12c1
)
+
(
-
t3
*
vb2x
)
+
(
vb1x
*
r12c1
));
dthetadr
[
0
][
1
][
1
]
=
sc1
*
((
-
t1
*
vb1y
)
+
(
vb2y
*
r12c1
)
+
(
-
t3
*
vb2y
)
+
(
vb1y
*
r12c1
));
dthetadr
[
0
][
1
][
2
]
=
sc1
*
((
-
t1
*
vb1z
)
+
(
vb2z
*
r12c1
)
+
(
-
t3
*
vb2z
)
+
(
vb1z
*
r12c1
));
dthetadr
[
0
][
2
][
0
]
=
sc1
*
((
t3
*
vb2x
)
-
(
vb1x
*
r12c1
));
dthetadr
[
0
][
2
][
1
]
=
sc1
*
((
t3
*
vb2y
)
-
(
vb1y
*
r12c1
));
dthetadr
[
0
][
2
][
2
]
=
sc1
*
((
t3
*
vb2z
)
-
(
vb1z
*
r12c1
));
// angle23
dthetadr
[
1
][
1
][
0
]
=
sc2
*
((
t2
*
vb2x
)
+
(
vb3x
*
r12c2
));
dthetadr
[
1
][
1
][
1
]
=
sc2
*
((
t2
*
vb2y
)
+
(
vb3y
*
r12c2
));
dthetadr
[
1
][
1
][
2
]
=
sc2
*
((
t2
*
vb2z
)
+
(
vb3z
*
r12c2
));
dthetadr
[
1
][
2
][
0
]
=
sc2
*
((
-
t2
*
vb2x
)
-
(
vb3x
*
r12c2
)
+
(
t4
*
vb3x
)
+
(
vb2x
*
r12c2
));
dthetadr
[
1
][
2
][
1
]
=
sc2
*
((
-
t2
*
vb2y
)
-
(
vb3y
*
r12c2
)
+
(
t4
*
vb3y
)
+
(
vb2y
*
r12c2
));
dthetadr
[
1
][
2
][
2
]
=
sc2
*
((
-
t2
*
vb2z
)
-
(
vb3z
*
r12c2
)
+
(
t4
*
vb3z
)
+
(
vb2z
*
r12c2
));
dthetadr
[
1
][
3
][
0
]
=
-
sc2
*
((
t4
*
vb3x
)
+
(
vb2x
*
r12c2
));
dthetadr
[
1
][
3
][
1
]
=
-
sc2
*
((
t4
*
vb3y
)
+
(
vb2y
*
r12c2
));
dthetadr
[
1
][
3
][
2
]
=
-
sc2
*
((
t4
*
vb3z
)
+
(
vb2z
*
r12c2
));
// mid-bond/torsion coupling
// energy on bond2 (middle bond)
cos2phi
=
cos
(
2.0
*
phi
);
cos3phi
=
cos
(
3.0
*
phi
);
bt1
=
mbt_f1
[
type
]
*
cosphi
;
bt2
=
mbt_f2
[
type
]
*
cos2phi
;
bt3
=
mbt_f3
[
type
]
*
cos3phi
;
sumbte
=
bt1
+
bt2
+
bt3
;
db
=
r2
-
mbt_r0
[
type
];
if
(
EFLAG
)
edihedral
+=
db
*
sumbte
;
// force on bond2
bt1
=
-
mbt_f1
[
type
]
*
sinphi
;
bt2
=
-
2.0
*
mbt_f2
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
-
3.0
*
mbt_f3
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
+=
db
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dbonddr
[
1
][
i
][
j
];
// end-bond/torsion coupling
// energy on bond1 (first bond)
bt1
=
ebt_f1_1
[
type
]
*
cosphi
;
bt2
=
ebt_f2_1
[
type
]
*
cos2phi
;
bt3
=
ebt_f3_1
[
type
]
*
cos3phi
;
sumbte
=
bt1
+
bt2
+
bt3
;
db
=
r1
-
ebt_r0_1
[
type
];
if
(
EFLAG
)
edihedral
+=
db
*
(
bt1
+
bt2
+
bt3
);
// force on bond1
bt1
=
ebt_f1_1
[
type
]
*
sinphi
;
bt2
=
2.0
*
ebt_f2_1
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
3.0
*
ebt_f3_1
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
-=
db
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dbonddr
[
0
][
i
][
j
];
// end-bond/torsion coupling
// energy on bond3 (last bond)
bt1
=
ebt_f1_2
[
type
]
*
cosphi
;
bt2
=
ebt_f2_2
[
type
]
*
cos2phi
;
bt3
=
ebt_f3_2
[
type
]
*
cos3phi
;
sumbte
=
bt1
+
bt2
+
bt3
;
db
=
r3
-
ebt_r0_2
[
type
];
if
(
EFLAG
)
edihedral
+=
db
*
(
bt1
+
bt2
+
bt3
);
// force on bond3
bt1
=
-
ebt_f1_2
[
type
]
*
sinphi
;
bt2
=
-
2.0
*
ebt_f2_2
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
-
3.0
*
ebt_f3_2
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
+=
db
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dbonddr
[
2
][
i
][
j
];
// angle/torsion coupling
// energy on angle1
at1
=
at_f1_1
[
type
]
*
cosphi
;
at2
=
at_f2_1
[
type
]
*
cos2phi
;
at3
=
at_f3_1
[
type
]
*
cos3phi
;
sumbte
=
at1
+
at2
+
at3
;
da
=
acos
(
costh12
)
-
at_theta0_1
[
type
];
if
(
EFLAG
)
edihedral
+=
da
*
(
at1
+
at2
+
at3
);
// force on angle1
bt1
=
at_f1_1
[
type
]
*
sinphi
;
bt2
=
2.0
*
at_f2_1
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
3.0
*
at_f3_1
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
-=
da
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dthetadr
[
0
][
i
][
j
];
// energy on angle2
at1
=
at_f1_2
[
type
]
*
cosphi
;
at2
=
at_f2_2
[
type
]
*
cos2phi
;
at3
=
at_f3_2
[
type
]
*
cos3phi
;
sumbte
=
at1
+
at2
+
at3
;
da
=
acos
(
costh23
)
-
at_theta0_2
[
type
];
if
(
EFLAG
)
edihedral
+=
da
*
(
at1
+
at2
+
at3
);
// force on angle2
bt1
=
-
at_f1_2
[
type
]
*
sinphi
;
bt2
=
-
2.0
*
at_f2_2
[
type
]
*
sin
(
2.0
*
phi
);
bt3
=
-
3.0
*
at_f3_2
[
type
]
*
sin
(
3.0
*
phi
);
sumbtf
=
bt1
+
bt2
+
bt3
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
+=
da
*
sumbtf
*
dphidr
[
i
][
j
]
+
sumbte
*
dthetadr
[
1
][
i
][
j
];
// angle/angle/torsion coupling
da1
=
acos
(
costh12
)
-
aat_theta0_1
[
type
];
da2
=
acos
(
costh23
)
-
aat_theta0_2
[
type
];
if
(
EFLAG
)
edihedral
+=
aat_k
[
type
]
*
da1
*
da2
*
cosphi
;
for
(
i
=
0
;
i
<
4
;
i
++
)
for
(
j
=
0
;
j
<
3
;
j
++
)
fabcd
[
i
][
j
]
-=
aat_k
[
type
]
*
(
cosphi
*
(
da2
*
dthetadr
[
0
][
i
][
j
]
-
da1
*
dthetadr
[
1
][
i
][
j
])
+
sinphi
*
da1
*
da2
*
dphidr
[
i
][
j
]);
// bond1/bond3 coupling
if
(
fabs
(
bb13t_k
[
type
])
>
SMALL
)
{
r1_0
=
bb13t_r10
[
type
];
r3_0
=
bb13t_r30
[
type
];
dr1
=
r1
-
r1_0
;
dr2
=
r3
-
r3_0
;
tk1
=
-
bb13t_k
[
type
]
*
dr1
/
r3
;
tk2
=
-
bb13t_k
[
type
]
*
dr2
/
r1
;
if
(
EFLAG
)
edihedral
+=
bb13t_k
[
type
]
*
dr1
*
dr2
;
fabcd
[
0
][
0
]
+=
tk2
*
vb1x
;
fabcd
[
0
][
1
]
+=
tk2
*
vb1y
;
fabcd
[
0
][
2
]
+=
tk2
*
vb1z
;
fabcd
[
1
][
0
]
-=
tk2
*
vb1x
;
fabcd
[
1
][
1
]
-=
tk2
*
vb1y
;
fabcd
[
1
][
2
]
-=
tk2
*
vb1z
;
fabcd
[
2
][
0
]
-=
tk1
*
vb3x
;
fabcd
[
2
][
1
]
-=
tk1
*
vb3y
;
fabcd
[
2
][
2
]
-=
tk1
*
vb3z
;
fabcd
[
3
][
0
]
+=
tk1
*
vb3x
;
fabcd
[
3
][
1
]
+=
tk1
*
vb3y
;
fabcd
[
3
][
2
]
+=
tk1
*
vb3z
;
}
// apply force to each of 4 atoms
if
(
NEWTON_BOND
||
i1
<
nlocal
)
{
f
[
i1
][
0
]
+=
fabcd
[
0
][
0
];
f
[
i1
][
1
]
+=
fabcd
[
0
][
1
];
f
[
i1
][
2
]
+=
fabcd
[
0
][
2
];
}
if
(
NEWTON_BOND
||
i2
<
nlocal
)
{
f
[
i2
][
0
]
+=
fabcd
[
1
][
0
];
f
[
i2
][
1
]
+=
fabcd
[
1
][
1
];
f
[
i2
][
2
]
+=
fabcd
[
1
][
2
];
}
if
(
NEWTON_BOND
||
i3
<
nlocal
)
{
f
[
i3
][
0
]
+=
fabcd
[
2
][
0
];
f
[
i3
][
1
]
+=
fabcd
[
2
][
1
];
f
[
i3
][
2
]
+=
fabcd
[
2
][
2
];
}
if
(
NEWTON_BOND
||
i4
<
nlocal
)
{
f
[
i4
][
0
]
+=
fabcd
[
3
][
0
];
f
[
i4
][
1
]
+=
fabcd
[
3
][
1
];
f
[
i4
][
2
]
+=
fabcd
[
3
][
2
];
}
if
(
EVFLAG
)
ev_tally_thr
(
this
,
i1
,
i2
,
i3
,
i4
,
nlocal
,
NEWTON_BOND
,
edihedral
,
fabcd
[
0
],
fabcd
[
2
],
fabcd
[
3
],
vb1x
,
vb1y
,
vb1z
,
vb2x
,
vb2y
,
vb2z
,
vb3x
,
vb3y
,
vb3z
,
tid
);
}
}
Event Timeline
Log In to Comment