Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90468404
pair_brownian_poly_omp.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 23:19
Size
11 KB
Mime Type
text/x-c++
Expires
Sun, Nov 3, 23:19 (2 d)
Engine
blob
Format
Raw Data
Handle
22036242
Attached To
rLAMMPS lammps
pair_brownian_poly_omp.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
This software is distributed under the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Axel Kohlmeyer (Temple U)
------------------------------------------------------------------------- */
#include <math.h>
#include "pair_brownian_poly_omp.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "force.h"
#include "input.h"
#include "neighbor.h"
#include "neigh_list.h"
#include "update.h"
#include "variable.h"
#include "random_mars.h"
#include "fix_wall.h"
#include "math_const.h"
#include "math_special.h"
#include "suffix.h"
using namespace LAMMPS_NS;
using namespace MathConst;
using namespace MathSpecial;
#define EPSILON 1.0e-10
// same as fix_wall.cpp
enum{EDGE,CONSTANT,VARIABLE};
/* ---------------------------------------------------------------------- */
PairBrownianPolyOMP::PairBrownianPolyOMP(LAMMPS *lmp) :
PairBrownianPoly(lmp), ThrOMP(lmp, THR_PAIR)
{
suffix_flag |= Suffix::OMP;
respa_enable = 0;
random_thr = NULL;
nthreads = 0;
}
/* ---------------------------------------------------------------------- */
PairBrownianPolyOMP::~PairBrownianPolyOMP()
{
if (random_thr) {
for (int i=1; i < nthreads; ++i)
delete random_thr[i];
delete[] random_thr;
random_thr = NULL;
}
}
/* ---------------------------------------------------------------------- */
void PairBrownianPolyOMP::compute(int eflag, int vflag)
{
if (eflag || vflag) {
ev_setup(eflag,vflag);
} else evflag = vflag_fdotr = 0;
const int nall = atom->nlocal + atom->nghost;
const int inum = list->inum;
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
// in the volume fraction as a result of fix deform or moving walls
double dims[3], wallcoord;
if (flagVF) // Flag for volume fraction corrections
if (flagdeform || flagwall == 2){ // Possible changes in volume fraction
if (flagdeform && !flagwall)
for (int j = 0; j < 3; j++)
dims[j] = domain->prd[j];
else if (flagwall == 2 || (flagdeform && flagwall == 1)){
double wallhi[3], walllo[3];
for (int j = 0; j < 3; j++){
wallhi[j] = domain->prd[j];
walllo[j] = 0;
}
for (int m = 0; m < wallfix->nwall; m++){
int dim = wallfix->wallwhich[m] / 2;
int side = wallfix->wallwhich[m] % 2;
if (wallfix->xstyle[m] == VARIABLE){
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
}
else wallcoord = wallfix->coord0[m];
if (side == 0) walllo[dim] = wallcoord;
else wallhi[dim] = wallcoord;
}
for (int j = 0; j < 3; j++)
dims[j] = wallhi[j] - walllo[j];
}
double vol_T = dims[0]*dims[1]*dims[2];
double vol_f = vol_P/vol_T;
if (flaglog == 0) {
R0 = 6*MY_PI*mu*rad*(1.0 + 2.16*vol_f);
RT0 = 8*MY_PI*mu*cube(rad);
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
} else {
R0 = 6*MY_PI*mu*rad*(1.0 + 2.725*vol_f - 6.583*vol_f*vol_f);
RT0 = 8*MY_PI*mu*cube(rad)*(1.0 + 0.749*vol_f - 2.469*vol_f*vol_f);
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
}
}
// number of threads has changed. reallocate pool of pRNGs
if (nthreads != comm->nthreads) {
if (random_thr) {
for (int i=1; i < nthreads; ++i)
delete random_thr[i];
delete[] random_thr;
}
nthreads = comm->nthreads;
random_thr = new RanMars*[nthreads];
for (int i=1; i < nthreads; ++i)
random_thr[i] = NULL;
// to ensure full compatibility with the serial BrownianPoly style
// we use is random number generator instance for thread 0
random_thr[0] = random;
}
#if defined(_OPENMP)
#pragma omp parallel default(none) shared(eflag,vflag)
#endif
{
int ifrom, ito, tid;
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
ThrData *thr = fix->get_thr(tid);
thr->timer(Timer::START);
ev_setup_thr(eflag, vflag, nall, eatom, vatom, thr);
// generate a random number generator instance for
// all threads != 0. make sure we use unique seeds.
if ((tid > 0) && (random_thr[tid] == NULL))
random_thr[tid] = new RanMars(Pair::lmp, seed + comm->me
+ comm->nprocs*tid);
if (flaglog) {
if (evflag)
eval<1,1>(ifrom, ito, thr);
else
eval<1,0>(ifrom, ito, thr);
} else {
if (evflag)
eval<0,1>(ifrom, ito, thr);
else eval<0,0>(ifrom, ito, thr);
}
thr->timer(Timer::PAIR);
reduce_thr(this, eflag, vflag, thr);
} // end of omp parallel region
}
template <int FLAGLOG, int EVFLAG>
void PairBrownianPolyOMP::eval(int iifrom, int iito, ThrData * const thr)
{
int i,j,ii,jj,jnum,itype,jtype;
double xtmp,ytmp,ztmp,delx,dely,delz,fx,fy,fz,tx,ty,tz;
double rsq,r,h_sep,beta0,beta1,radi,radj;
int *ilist,*jlist,*numneigh,**firstneigh;
const double * const * const x = atom->x;
double * const * const f = thr->get_f();
double * const * const torque = thr->get_torque();
const double * const radius = atom->radius;
const int * const type = atom->type;
const int nlocal = atom->nlocal;
RanMars &rng = *random_thr[thr->get_tid()];
double vxmu2f = force->vxmu2f;
int overlaps = 0;
double randr;
double prethermostat;
double xl[3],a_sq,a_sh,a_pu,Fbmag;
double p1[3],p2[3],p3[3];
// scale factor for Brownian moments
prethermostat = sqrt(24.0*force->boltz*t_target/update->dt);
prethermostat *= sqrt(force->vxmu2f/force->ftm2v/force->mvv2e);
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = iifrom; ii < iito; ++ii) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
radi = radius[i];
jlist = firstneigh[i];
jnum = numneigh[i];
// FLD contribution to force and torque due to isotropic terms
if (flagfld) {
f[i][0] += prethermostat*sqrt(R0*radi)*(rng.uniform()-0.5);
f[i][1] += prethermostat*sqrt(R0*radi)*(rng.uniform()-0.5);
f[i][2] += prethermostat*sqrt(R0*radi)*(rng.uniform()-0.5);
if (FLAGLOG) {
const double rad3 = radi*radi*radi;
torque[i][0] += prethermostat*sqrt(RT0*rad3)*(rng.uniform()-0.5);
torque[i][1] += prethermostat*sqrt(RT0*rad3)*(rng.uniform()-0.5);
torque[i][2] += prethermostat*sqrt(RT0*rad3)*(rng.uniform()-0.5);
}
}
if (!flagHI) continue;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx*delx + dely*dely + delz*delz;
jtype = type[j];
radj = radius[j];
if (rsq < cutsq[itype][jtype]) {
r = sqrt(rsq);
// scalar resistances a_sq and a_sh
h_sep = r - radi-radj;
// check for overlaps
if (h_sep < 0.0) overlaps++;
// if less than minimum gap, use minimum gap instead
if (r < cut_inner[itype][jtype])
h_sep = cut_inner[itype][jtype] - radi-radj;
// scale h_sep by radi
h_sep = h_sep/radi;
beta0 = radj/radi;
beta1 = 1.0 + beta0;
// scalar resistances
if (FLAGLOG) {
a_sq = beta0*beta0/beta1/beta1/h_sep +
(1.0+7.0*beta0+beta0*beta0)/5.0/cube(beta1)*log(1.0/h_sep);
a_sq += (1.0+18.0*beta0-29.0*beta0*beta0+18.0*cube(beta0) +
powint(beta0,4))/21.0/powint(beta1,4)*h_sep*log(1.0/h_sep);
a_sq *= 6.0*MY_PI*mu*radi;
a_sh = 4.0*beta0*(2.0+beta0+2.0*beta0*beta0)/15.0/cube(beta1) *
log(1.0/h_sep);
a_sh += 4.0*(16.0-45.0*beta0+58.0*beta0*beta0-45.0*cube(beta0) +
16.0*powint(beta0,4))/375.0/powint(beta1,4) *
h_sep*log(1.0/h_sep);
a_sh *= 6.0*MY_PI*mu*radi;
a_pu = beta0*(4.0+beta0)/10.0/beta1/beta1*log(1.0/h_sep);
a_pu += (32.0-33.0*beta0+83.0*beta0*beta0+43.0 *
cube(beta0))/250.0/cube(beta1)*h_sep*log(1.0/h_sep);
a_pu *= 8.0*MY_PI*mu*cube(radi);
} else a_sq = 6.0*MY_PI*mu*radi*(beta0*beta0/beta1/beta1/h_sep);
// generate the Pairwise Brownian Force: a_sq
Fbmag = prethermostat*sqrt(a_sq);
// generate a random number
randr = rng.uniform()-0.5;
// contribution due to Brownian motion
fx = Fbmag*randr*delx/r;
fy = Fbmag*randr*dely/r;
fz = Fbmag*randr*delz/r;
// add terms due to a_sh
if (FLAGLOG) {
// generate two orthogonal vectors to the line of centers
p1[0] = delx/r; p1[1] = dely/r; p1[2] = delz/r;
set_3_orthogonal_vectors(p1,p2,p3);
// magnitude
Fbmag = prethermostat*sqrt(a_sh);
// force in each of the two directions
randr = rng.uniform()-0.5;
fx += Fbmag*randr*p2[0];
fy += Fbmag*randr*p2[1];
fz += Fbmag*randr*p2[2];
randr = rng.uniform()-0.5;
fx += Fbmag*randr*p3[0];
fy += Fbmag*randr*p3[1];
fz += Fbmag*randr*p3[2];
}
// scale forces to appropriate units
fx = vxmu2f*fx;
fy = vxmu2f*fy;
fz = vxmu2f*fz;
// sum to total force
f[i][0] -= fx;
f[i][1] -= fy;
f[i][2] -= fz;
// torque due to the Brownian Force
if (FLAGLOG) {
// location of the point of closest approach on I from its center
xl[0] = -delx/r*radi;
xl[1] = -dely/r*radi;
xl[2] = -delz/r*radi;
// torque = xl_cross_F
tx = xl[1]*fz - xl[2]*fy;
ty = xl[2]*fx - xl[0]*fz;
tz = xl[0]*fy - xl[1]*fx;
// torque is same on both particles
torque[i][0] -= tx;
torque[i][1] -= ty;
torque[i][2] -= tz;
// torque due to a_pu
Fbmag = prethermostat*sqrt(a_pu);
// force in each direction
randr = rng.uniform()-0.5;
tx = Fbmag*randr*p2[0];
ty = Fbmag*randr*p2[1];
tz = Fbmag*randr*p2[2];
randr = rng.uniform()-0.5;
tx += Fbmag*randr*p3[0];
ty += Fbmag*randr*p3[1];
tz += Fbmag*randr*p3[2];
// torque has opposite sign on two particles
torque[i][0] -= tx;
torque[i][1] -= ty;
torque[i][2] -= tz;
}
// set j = nlocal so that only I gets tallied
if (EVFLAG) ev_tally_xyz(i,nlocal,nlocal,/* newton_pair */ 0,
0.0,0.0,-fx,-fy,-fz,delx,dely,delz);
}
}
}
}
/* ---------------------------------------------------------------------- */
double PairBrownianPolyOMP::memory_usage()
{
double bytes = memory_usage_thr();
bytes += PairBrownianPoly::memory_usage();
bytes += nthreads * sizeof(RanMars*);
bytes += nthreads * sizeof(RanMars);
return bytes;
}
Event Timeline
Log In to Comment