Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91321778
compute_bond_local.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 9, 23:56
Size
12 KB
Mime Type
text/x-c
Expires
Mon, Nov 11, 23:56 (2 d)
Engine
blob
Format
Raw Data
Handle
22242758
Attached To
rLAMMPS lammps
compute_bond_local.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include <math.h>
#include <string.h>
#include "compute_bond_local.h"
#include "atom.h"
#include "atom_vec.h"
#include "molecule.h"
#include "update.h"
#include "domain.h"
#include "force.h"
#include "bond.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define DELTA 10000
#define SMALL 1.0e-15
enum{DIST,ENGPOT,FORCE,VELVIB,VELROT,ENGTRANS,ENGVIB,ENGROT};
/* ---------------------------------------------------------------------- */
ComputeBondLocal::ComputeBondLocal(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg),
bstyle(NULL)
{
if (narg < 4) error->all(FLERR,"Illegal compute bond/local command");
if (atom->avec->bonds_allow == 0)
error->all(FLERR,"Compute bond/local used when bonds are not allowed");
local_flag = 1;
nvalues = narg - 3;
if (nvalues == 1) size_local_cols = 0;
else size_local_cols = nvalues;
bstyle = new int[nvalues];
nvalues = 0;
for (int iarg = 3; iarg < narg; iarg++) {
if (strcmp(arg[iarg],"dist") == 0) bstyle[nvalues++] = DIST;
else if (strcmp(arg[iarg],"engpot") == 0) bstyle[nvalues++] = ENGPOT;
else if (strcmp(arg[iarg],"force") == 0) bstyle[nvalues++] = FORCE;
else if (strcmp(arg[iarg],"velvib") == 0) bstyle[nvalues++] = VELVIB;
else if (strcmp(arg[iarg],"velrot") == 0) bstyle[nvalues++] = VELROT;
else if (strcmp(arg[iarg],"engtrans") == 0) bstyle[nvalues++] = ENGTRANS;
else if (strcmp(arg[iarg],"engvib") == 0) bstyle[nvalues++] = ENGVIB;
else if (strcmp(arg[iarg],"engrot") == 0) bstyle[nvalues++] = ENGROT;
else error->all(FLERR,"Invalid keyword in compute bond/local command");
}
// set singleflag if need to call bond->single()
singleflag = 0;
for (int i = 0; i < nvalues; i++)
if (bstyle[i] != DIST) singleflag = 1;
nmax = 0;
}
/* ---------------------------------------------------------------------- */
ComputeBondLocal::~ComputeBondLocal()
{
memory->destroy(vector);
memory->destroy(array);
delete [] bstyle;
}
/* ---------------------------------------------------------------------- */
void ComputeBondLocal::init()
{
if (force->bond == NULL)
error->all(FLERR,"No bond style is defined for compute bond/local");
// do initial memory allocation so that memory_usage() is correct
ncount = compute_bonds(0);
if (ncount > nmax) reallocate(ncount);
size_local_rows = ncount;
}
/* ---------------------------------------------------------------------- */
void ComputeBondLocal::compute_local()
{
invoked_local = update->ntimestep;
// count local entries and compute bond info
ncount = compute_bonds(0);
if (ncount > nmax) reallocate(ncount);
size_local_rows = ncount;
ncount = compute_bonds(1);
}
/* ----------------------------------------------------------------------
count bonds and compute bond info on this proc
only count bond once if newton_bond is off
all atoms in interaction must be in group
all atoms in interaction must be known to proc
if bond is deleted (type = 0), do not count
if bond is turned off (type < 0), still count
if flag is set, compute requested info about bond
if bond is turned off (type < 0), energy = 0.0
------------------------------------------------------------------------- */
int ComputeBondLocal::compute_bonds(int flag)
{
int i,m,n,nb,atom1,atom2,imol,iatom,btype;
tagint tagprev;
double dx,dy,dz,rsq;
double dvx,dvy,dvz,vvib,vrotsq;
double vcmx,vcmy,vcmz;
double masstotal,massreduced;
double *ptr;
double **x = atom->x;
double **v = atom->v;
int *type = atom->type;
double *mass = atom->mass;
double *rmass = atom->rmass;
tagint *tag = atom->tag;
int *num_bond = atom->num_bond;
tagint **bond_atom = atom->bond_atom;
int **bond_type = atom->bond_type;
int *mask = atom->mask;
int *molindex = atom->molindex;
int *molatom = atom->molatom;
Molecule **onemols = atom->avec->onemols;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
int molecular = atom->molecular;
Bond *bond = force->bond;
double engpot,engtrans,engvib,engrot,fbond;
m = n = 0;
for (atom1 = 0; atom1 < nlocal; atom1++) {
if (!(mask[atom1] & groupbit)) continue;
if (molecular == 1) nb = num_bond[atom1];
else {
if (molindex[atom1] < 0) continue;
imol = molindex[atom1];
iatom = molatom[atom1];
nb = onemols[imol]->num_bond[iatom];
}
for (i = 0; i < nb; i++) {
if (molecular == 1) {
btype = bond_type[atom1][i];
atom2 = atom->map(bond_atom[atom1][i]);
} else {
tagprev = tag[atom1] - iatom - 1;
btype = onemols[imol]->bond_type[iatom][i];
atom2 = atom->map(onemols[imol]->bond_atom[iatom][i]+tagprev);
}
if (atom2 < 0 || !(mask[atom2] & groupbit)) continue;
if (newton_bond == 0 && tag[atom1] > tag[atom2]) continue;
if (btype == 0) continue;
if (flag) {
dx = x[atom1][0] - x[atom2][0];
dy = x[atom1][1] - x[atom2][1];
dz = x[atom1][2] - x[atom2][2];
domain->minimum_image(dx,dy,dz);
rsq = dx*dx + dy*dy + dz*dz;
if (singleflag && (btype > 0))
engpot = bond->single(btype,rsq,atom1,atom2,fbond);
else engpot = fbond = 0.0;
dvx = v[atom1][0] - v[atom2][0];
dvy = v[atom1][1] - v[atom2][1];
dvz = v[atom1][2] - v[atom2][2];
if (rmass) {
masstotal = rmass[atom1]+rmass[atom2];
vcmx = (rmass[atom1]*v[atom1][0] + rmass[atom2]*v[atom2][0]) / masstotal;
vcmy = (rmass[atom1]*v[atom1][1] + rmass[atom2]*v[atom2][1]) / masstotal;
vcmz = (rmass[atom1]*v[atom1][2] + rmass[atom2]*v[atom2][2]) / masstotal;
}
else {
masstotal = mass[type[atom1]]+mass[type[atom2]];
vcmx = (mass[type[atom1]]*v[atom1][0] + mass[type[atom2]]*v[atom2][0]) / masstotal;
vcmy = (mass[type[atom1]]*v[atom1][1] + mass[type[atom2]]*v[atom2][1]) / masstotal;
vcmz = (mass[type[atom1]]*v[atom1][2] + mass[type[atom2]]*v[atom2][2]) / masstotal;
}
engtrans=0.5*masstotal*(vcmx*vcmx+vcmy*vcmy+vcmz*vcmz)*force->mvv2e;
for (int i = 0; i < nvalues; i++) {
if (bstyle[i] == VELVIB || bstyle[i] == VELROT || bstyle[i] == ENGVIB || bstyle[i] == ENGROT) {
// compute velocity for each bond by changing basis from x,y,z to that
// along the bond vector from v'=inv(M)v, where the columns of M are
// the bond vector and two other vectors that make up an orthonormal
// basis
double ione[3][3],inverse[3][3],norm;
ione[0][0] = dx;
ione[1][0] = dy;
ione[2][0] = dz;
// normalize
norm = sqrt(ione[0][0]*ione[0][0] + ione[1][0]*ione[1][0] + ione[2][0]*ione[2][0]);
ione[0][0] /= norm;
ione[1][0] /= norm;
ione[2][0] /= norm;
// get vector that is perpendicular to the bond vector
if(fabs(dz)>=SMALL)
{
ione[0][1] = 0.0;
ione[1][1] = 1.0;
ione[2][1] = (-ione[0][0] * ione[0][1] - ione[1][0] * ione[1][1]) / ione[2][0];
}
else if(fabs(dx)>=SMALL)
{
ione[1][1] = 0.0;
ione[2][1] = 1.0;
ione[0][1] = (-ione[1][0] * ione[1][1] - ione[2][0] * ione[2][1]) / ione[0][0];
}
else if(fabs(dy)>=SMALL)
{
ione[2][1] = 0.0;
ione[0][1] = 1.0;
ione[1][1] = (-ione[2][0] * ione[2][1] - ione[0][0] * ione[0][1]) / ione[1][0];
}
// normalize
norm = sqrt(ione[0][1]*ione[0][1] + ione[1][1]*ione[1][1] + ione[2][1]*ione[2][1]);
ione[0][1] /= norm;
ione[1][1] /= norm;
ione[2][1] /= norm;
// find the last vector from the cross product
ione[0][2] = ione[1][0] * ione[2][1] - ione[1][1] * ione[2][0];
ione[1][2] = -(ione[0][0] * ione[2][1] - ione[0][1] * ione[2][0]);
ione[2][2] = ione[0][0] * ione[1][1] - ione[0][1] * ione[1][0];
// normalize
norm = sqrt(ione[0][2]*ione[0][2] + ione[1][2]*ione[1][2] + ione[2][2]*ione[2][2]);
ione[0][2] /= norm;
ione[1][2] /= norm;
ione[2][2] /= norm;
// compute inverse
double invdet = ione[0][0]*ione[1][1]*ione[2][2] +
ione[0][1]*ione[1][2]*ione[2][0] + ione[0][2]*ione[1][0]*ione[2][1] -
ione[0][0]*ione[1][2]*ione[2][1] - ione[0][1]*ione[1][0]*ione[2][2] -
ione[2][0]*ione[1][1]*ione[0][2];
invdet = 1.0/invdet; // determinant should always be 1, so this doesn't really matter
inverse[0][0] = invdet*(ione[1][1]*ione[2][2] - ione[1][2]*ione[2][1]);
inverse[0][1] = -invdet*(ione[0][1]*ione[2][2] - ione[0][2]*ione[2][1]);
inverse[0][2] = invdet*(ione[0][1]*ione[1][2] - ione[0][2]*ione[1][1]);
inverse[1][0] = -invdet*(ione[1][0]*ione[2][2] - ione[1][2]*ione[2][0]);
inverse[1][1] = invdet*(ione[0][0]*ione[2][2] - ione[0][2]*ione[2][0]);
inverse[1][2] = -invdet*(ione[0][0]*ione[1][2] - ione[0][2]*ione[1][0]);
inverse[2][0] = invdet*(ione[1][0]*ione[2][1] - ione[1][1]*ione[2][0]);
inverse[2][1] = -invdet*(ione[0][0]*ione[2][1] - ione[0][1]*ione[2][0]);
inverse[2][2] = invdet*(ione[0][0]*ione[1][1] - ione[0][1]*ione[1][0]);
vvib = inverse[0][0]*dvx + inverse[0][1]*dvy + inverse[0][2]*dvz;
vrotsq = (inverse[1][0]*dvx + inverse[1][1]*dvy + inverse[1][2]*dvz) *
(inverse[1][0]*dvx + inverse[1][1]*dvy + inverse[1][2]*dvz) +
(inverse[2][0]*dvx + inverse[2][1]*dvy + inverse[2][2]*dvz) *
(inverse[2][0]*dvx + inverse[2][1]*dvy + inverse[2][2]*dvz);
if (rmass) massreduced = rmass[atom1]*rmass[atom2]/(rmass[atom1]+rmass[atom2]);
else massreduced = mass[type[atom1]]*mass[type[atom2]]/(mass[type[atom1]]+mass[type[atom2]]);
engvib=0.5*massreduced*vvib*vvib*force->mvv2e;
engrot=0.5*massreduced*vrotsq*force->mvv2e;
break;
}
}
if (nvalues == 1) ptr = &vector[m];
else ptr = array[m];
for (n = 0; n < nvalues; n++) {
switch (bstyle[n]) {
case DIST:
ptr[n] = sqrt(rsq);
break;
case ENGPOT:
ptr[n] = engpot;
break;
case FORCE:
ptr[n] = sqrt(rsq)*fbond;
break;
case VELVIB:
ptr[n] = vvib;
break;
case VELROT:
ptr[n] = sqrt(vrotsq);
break;
case ENGTRANS:
ptr[n] = engtrans;
break;
case ENGVIB:
ptr[n] = engvib;
break;
case ENGROT:
ptr[n] = engrot;
break;
}
}
}
m++;
}
}
return m;
}
/* ---------------------------------------------------------------------- */
void ComputeBondLocal::reallocate(int n)
{
// grow vector or array and indices array
while (nmax < n) nmax += DELTA;
if (nvalues == 1) {
memory->destroy(vector);
memory->create(vector,nmax,"bond/local:vector");
vector_local = vector;
} else {
memory->destroy(array);
memory->create(array,nmax,nvalues,"bond/local:array");
array_local = array;
}
}
/* ----------------------------------------------------------------------
memory usage of local data
------------------------------------------------------------------------- */
double ComputeBondLocal::memory_usage()
{
double bytes = nmax*nvalues * sizeof(double);
return bytes;
}
Event Timeline
Log In to Comment