Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F102369953
compute_bond_local.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Feb 20, 00:25
Size
12 KB
Mime Type
text/x-c
Expires
Sat, Feb 22, 00:25 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
24340466
Attached To
rLAMMPS lammps
compute_bond_local.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include <math.h>
#include <string.h>
#include "compute_bond_local.h"
#include "atom.h"
#include "atom_vec.h"
#include "molecule.h"
#include "update.h"
#include "domain.h"
#include "force.h"
#include "bond.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
#define DELTA 10000
#define SMALL 1.0e-15
enum
{
DIST
,
ENGPOT
,
FORCE
,
VELVIB
,
VELROT
,
ENGTRANS
,
ENGVIB
,
ENGROT
};
/* ---------------------------------------------------------------------- */
ComputeBondLocal
::
ComputeBondLocal
(
LAMMPS
*
lmp
,
int
narg
,
char
**
arg
)
:
Compute
(
lmp
,
narg
,
arg
),
bstyle
(
NULL
)
{
if
(
narg
<
4
)
error
->
all
(
FLERR
,
"Illegal compute bond/local command"
);
if
(
atom
->
avec
->
bonds_allow
==
0
)
error
->
all
(
FLERR
,
"Compute bond/local used when bonds are not allowed"
);
local_flag
=
1
;
nvalues
=
narg
-
3
;
if
(
nvalues
==
1
)
size_local_cols
=
0
;
else
size_local_cols
=
nvalues
;
bstyle
=
new
int
[
nvalues
];
nvalues
=
0
;
for
(
int
iarg
=
3
;
iarg
<
narg
;
iarg
++
)
{
if
(
strcmp
(
arg
[
iarg
],
"dist"
)
==
0
)
bstyle
[
nvalues
++
]
=
DIST
;
else
if
(
strcmp
(
arg
[
iarg
],
"engpot"
)
==
0
)
bstyle
[
nvalues
++
]
=
ENGPOT
;
else
if
(
strcmp
(
arg
[
iarg
],
"force"
)
==
0
)
bstyle
[
nvalues
++
]
=
FORCE
;
else
if
(
strcmp
(
arg
[
iarg
],
"velvib"
)
==
0
)
bstyle
[
nvalues
++
]
=
VELVIB
;
else
if
(
strcmp
(
arg
[
iarg
],
"velrot"
)
==
0
)
bstyle
[
nvalues
++
]
=
VELROT
;
else
if
(
strcmp
(
arg
[
iarg
],
"engtrans"
)
==
0
)
bstyle
[
nvalues
++
]
=
ENGTRANS
;
else
if
(
strcmp
(
arg
[
iarg
],
"engvib"
)
==
0
)
bstyle
[
nvalues
++
]
=
ENGVIB
;
else
if
(
strcmp
(
arg
[
iarg
],
"engrot"
)
==
0
)
bstyle
[
nvalues
++
]
=
ENGROT
;
else
error
->
all
(
FLERR
,
"Invalid keyword in compute bond/local command"
);
}
// set singleflag if need to call bond->single()
singleflag
=
0
;
for
(
int
i
=
0
;
i
<
nvalues
;
i
++
)
if
(
bstyle
[
i
]
!=
DIST
)
singleflag
=
1
;
nmax
=
0
;
}
/* ---------------------------------------------------------------------- */
ComputeBondLocal
::~
ComputeBondLocal
()
{
memory
->
destroy
(
vector
);
memory
->
destroy
(
array
);
delete
[]
bstyle
;
}
/* ---------------------------------------------------------------------- */
void
ComputeBondLocal
::
init
()
{
if
(
force
->
bond
==
NULL
)
error
->
all
(
FLERR
,
"No bond style is defined for compute bond/local"
);
// do initial memory allocation so that memory_usage() is correct
ncount
=
compute_bonds
(
0
);
if
(
ncount
>
nmax
)
reallocate
(
ncount
);
size_local_rows
=
ncount
;
}
/* ---------------------------------------------------------------------- */
void
ComputeBondLocal
::
compute_local
()
{
invoked_local
=
update
->
ntimestep
;
// count local entries and compute bond info
ncount
=
compute_bonds
(
0
);
if
(
ncount
>
nmax
)
reallocate
(
ncount
);
size_local_rows
=
ncount
;
ncount
=
compute_bonds
(
1
);
}
/* ----------------------------------------------------------------------
count bonds and compute bond info on this proc
only count bond once if newton_bond is off
all atoms in interaction must be in group
all atoms in interaction must be known to proc
if bond is deleted (type = 0), do not count
if bond is turned off (type < 0), still count
if flag is set, compute requested info about bond
if bond is turned off (type < 0), energy = 0.0
------------------------------------------------------------------------- */
int
ComputeBondLocal
::
compute_bonds
(
int
flag
)
{
int
i
,
m
,
n
,
nb
,
atom1
,
atom2
,
imol
,
iatom
,
btype
;
tagint
tagprev
;
double
dx
,
dy
,
dz
,
rsq
;
double
dvx
,
dvy
,
dvz
,
vvib
,
vrotsq
;
double
vcmx
,
vcmy
,
vcmz
;
double
masstotal
,
massreduced
;
double
*
ptr
;
double
**
x
=
atom
->
x
;
double
**
v
=
atom
->
v
;
int
*
type
=
atom
->
type
;
double
*
mass
=
atom
->
mass
;
double
*
rmass
=
atom
->
rmass
;
tagint
*
tag
=
atom
->
tag
;
int
*
num_bond
=
atom
->
num_bond
;
tagint
**
bond_atom
=
atom
->
bond_atom
;
int
**
bond_type
=
atom
->
bond_type
;
int
*
mask
=
atom
->
mask
;
int
*
molindex
=
atom
->
molindex
;
int
*
molatom
=
atom
->
molatom
;
Molecule
**
onemols
=
atom
->
avec
->
onemols
;
int
nlocal
=
atom
->
nlocal
;
int
newton_bond
=
force
->
newton_bond
;
int
molecular
=
atom
->
molecular
;
Bond
*
bond
=
force
->
bond
;
double
engpot
,
engtrans
,
engvib
,
engrot
,
fbond
;
m
=
n
=
0
;
for
(
atom1
=
0
;
atom1
<
nlocal
;
atom1
++
)
{
if
(
!
(
mask
[
atom1
]
&
groupbit
))
continue
;
if
(
molecular
==
1
)
nb
=
num_bond
[
atom1
];
else
{
if
(
molindex
[
atom1
]
<
0
)
continue
;
imol
=
molindex
[
atom1
];
iatom
=
molatom
[
atom1
];
nb
=
onemols
[
imol
]
->
num_bond
[
iatom
];
}
for
(
i
=
0
;
i
<
nb
;
i
++
)
{
if
(
molecular
==
1
)
{
btype
=
bond_type
[
atom1
][
i
];
atom2
=
atom
->
map
(
bond_atom
[
atom1
][
i
]);
}
else
{
tagprev
=
tag
[
atom1
]
-
iatom
-
1
;
btype
=
onemols
[
imol
]
->
bond_type
[
iatom
][
i
];
atom2
=
atom
->
map
(
onemols
[
imol
]
->
bond_atom
[
iatom
][
i
]
+
tagprev
);
}
if
(
atom2
<
0
||
!
(
mask
[
atom2
]
&
groupbit
))
continue
;
if
(
newton_bond
==
0
&&
tag
[
atom1
]
>
tag
[
atom2
])
continue
;
if
(
btype
==
0
)
continue
;
if
(
flag
)
{
dx
=
x
[
atom1
][
0
]
-
x
[
atom2
][
0
];
dy
=
x
[
atom1
][
1
]
-
x
[
atom2
][
1
];
dz
=
x
[
atom1
][
2
]
-
x
[
atom2
][
2
];
domain
->
minimum_image
(
dx
,
dy
,
dz
);
rsq
=
dx
*
dx
+
dy
*
dy
+
dz
*
dz
;
if
(
singleflag
&&
(
btype
>
0
))
engpot
=
bond
->
single
(
btype
,
rsq
,
atom1
,
atom2
,
fbond
);
else
engpot
=
fbond
=
0.0
;
dvx
=
v
[
atom1
][
0
]
-
v
[
atom2
][
0
];
dvy
=
v
[
atom1
][
1
]
-
v
[
atom2
][
1
];
dvz
=
v
[
atom1
][
2
]
-
v
[
atom2
][
2
];
if
(
rmass
)
{
masstotal
=
rmass
[
atom1
]
+
rmass
[
atom2
];
vcmx
=
(
rmass
[
atom1
]
*
v
[
atom1
][
0
]
+
rmass
[
atom2
]
*
v
[
atom2
][
0
])
/
masstotal
;
vcmy
=
(
rmass
[
atom1
]
*
v
[
atom1
][
1
]
+
rmass
[
atom2
]
*
v
[
atom2
][
1
])
/
masstotal
;
vcmz
=
(
rmass
[
atom1
]
*
v
[
atom1
][
2
]
+
rmass
[
atom2
]
*
v
[
atom2
][
2
])
/
masstotal
;
}
else
{
masstotal
=
mass
[
type
[
atom1
]]
+
mass
[
type
[
atom2
]];
vcmx
=
(
mass
[
type
[
atom1
]]
*
v
[
atom1
][
0
]
+
mass
[
type
[
atom2
]]
*
v
[
atom2
][
0
])
/
masstotal
;
vcmy
=
(
mass
[
type
[
atom1
]]
*
v
[
atom1
][
1
]
+
mass
[
type
[
atom2
]]
*
v
[
atom2
][
1
])
/
masstotal
;
vcmz
=
(
mass
[
type
[
atom1
]]
*
v
[
atom1
][
2
]
+
mass
[
type
[
atom2
]]
*
v
[
atom2
][
2
])
/
masstotal
;
}
engtrans
=
0.5
*
masstotal
*
(
vcmx
*
vcmx
+
vcmy
*
vcmy
+
vcmz
*
vcmz
)
*
force
->
mvv2e
;
for
(
int
i
=
0
;
i
<
nvalues
;
i
++
)
{
if
(
bstyle
[
i
]
==
VELVIB
||
bstyle
[
i
]
==
VELROT
||
bstyle
[
i
]
==
ENGVIB
||
bstyle
[
i
]
==
ENGROT
)
{
// compute velocity for each bond by changing basis from x,y,z to that
// along the bond vector from v'=inv(M)v, where the columns of M are
// the bond vector and two other vectors that make up an orthonormal
// basis
double
ione
[
3
][
3
],
inverse
[
3
][
3
],
norm
;
ione
[
0
][
0
]
=
dx
;
ione
[
1
][
0
]
=
dy
;
ione
[
2
][
0
]
=
dz
;
// normalize
norm
=
sqrt
(
ione
[
0
][
0
]
*
ione
[
0
][
0
]
+
ione
[
1
][
0
]
*
ione
[
1
][
0
]
+
ione
[
2
][
0
]
*
ione
[
2
][
0
]);
ione
[
0
][
0
]
/=
norm
;
ione
[
1
][
0
]
/=
norm
;
ione
[
2
][
0
]
/=
norm
;
// get vector that is perpendicular to the bond vector
if
(
fabs
(
dz
)
>=
SMALL
)
{
ione
[
0
][
1
]
=
0.0
;
ione
[
1
][
1
]
=
1.0
;
ione
[
2
][
1
]
=
(
-
ione
[
0
][
0
]
*
ione
[
0
][
1
]
-
ione
[
1
][
0
]
*
ione
[
1
][
1
])
/
ione
[
2
][
0
];
}
else
if
(
fabs
(
dx
)
>=
SMALL
)
{
ione
[
1
][
1
]
=
0.0
;
ione
[
2
][
1
]
=
1.0
;
ione
[
0
][
1
]
=
(
-
ione
[
1
][
0
]
*
ione
[
1
][
1
]
-
ione
[
2
][
0
]
*
ione
[
2
][
1
])
/
ione
[
0
][
0
];
}
else
if
(
fabs
(
dy
)
>=
SMALL
)
{
ione
[
2
][
1
]
=
0.0
;
ione
[
0
][
1
]
=
1.0
;
ione
[
1
][
1
]
=
(
-
ione
[
2
][
0
]
*
ione
[
2
][
1
]
-
ione
[
0
][
0
]
*
ione
[
0
][
1
])
/
ione
[
1
][
0
];
}
// normalize
norm
=
sqrt
(
ione
[
0
][
1
]
*
ione
[
0
][
1
]
+
ione
[
1
][
1
]
*
ione
[
1
][
1
]
+
ione
[
2
][
1
]
*
ione
[
2
][
1
]);
ione
[
0
][
1
]
/=
norm
;
ione
[
1
][
1
]
/=
norm
;
ione
[
2
][
1
]
/=
norm
;
// find the last vector from the cross product
ione
[
0
][
2
]
=
ione
[
1
][
0
]
*
ione
[
2
][
1
]
-
ione
[
1
][
1
]
*
ione
[
2
][
0
];
ione
[
1
][
2
]
=
-
(
ione
[
0
][
0
]
*
ione
[
2
][
1
]
-
ione
[
0
][
1
]
*
ione
[
2
][
0
]);
ione
[
2
][
2
]
=
ione
[
0
][
0
]
*
ione
[
1
][
1
]
-
ione
[
0
][
1
]
*
ione
[
1
][
0
];
// normalize
norm
=
sqrt
(
ione
[
0
][
2
]
*
ione
[
0
][
2
]
+
ione
[
1
][
2
]
*
ione
[
1
][
2
]
+
ione
[
2
][
2
]
*
ione
[
2
][
2
]);
ione
[
0
][
2
]
/=
norm
;
ione
[
1
][
2
]
/=
norm
;
ione
[
2
][
2
]
/=
norm
;
// compute inverse
double
invdet
=
ione
[
0
][
0
]
*
ione
[
1
][
1
]
*
ione
[
2
][
2
]
+
ione
[
0
][
1
]
*
ione
[
1
][
2
]
*
ione
[
2
][
0
]
+
ione
[
0
][
2
]
*
ione
[
1
][
0
]
*
ione
[
2
][
1
]
-
ione
[
0
][
0
]
*
ione
[
1
][
2
]
*
ione
[
2
][
1
]
-
ione
[
0
][
1
]
*
ione
[
1
][
0
]
*
ione
[
2
][
2
]
-
ione
[
2
][
0
]
*
ione
[
1
][
1
]
*
ione
[
0
][
2
];
invdet
=
1.0
/
invdet
;
// determinant should always be 1, so this doesn't really matter
inverse
[
0
][
0
]
=
invdet
*
(
ione
[
1
][
1
]
*
ione
[
2
][
2
]
-
ione
[
1
][
2
]
*
ione
[
2
][
1
]);
inverse
[
0
][
1
]
=
-
invdet
*
(
ione
[
0
][
1
]
*
ione
[
2
][
2
]
-
ione
[
0
][
2
]
*
ione
[
2
][
1
]);
inverse
[
0
][
2
]
=
invdet
*
(
ione
[
0
][
1
]
*
ione
[
1
][
2
]
-
ione
[
0
][
2
]
*
ione
[
1
][
1
]);
inverse
[
1
][
0
]
=
-
invdet
*
(
ione
[
1
][
0
]
*
ione
[
2
][
2
]
-
ione
[
1
][
2
]
*
ione
[
2
][
0
]);
inverse
[
1
][
1
]
=
invdet
*
(
ione
[
0
][
0
]
*
ione
[
2
][
2
]
-
ione
[
0
][
2
]
*
ione
[
2
][
0
]);
inverse
[
1
][
2
]
=
-
invdet
*
(
ione
[
0
][
0
]
*
ione
[
1
][
2
]
-
ione
[
0
][
2
]
*
ione
[
1
][
0
]);
inverse
[
2
][
0
]
=
invdet
*
(
ione
[
1
][
0
]
*
ione
[
2
][
1
]
-
ione
[
1
][
1
]
*
ione
[
2
][
0
]);
inverse
[
2
][
1
]
=
-
invdet
*
(
ione
[
0
][
0
]
*
ione
[
2
][
1
]
-
ione
[
0
][
1
]
*
ione
[
2
][
0
]);
inverse
[
2
][
2
]
=
invdet
*
(
ione
[
0
][
0
]
*
ione
[
1
][
1
]
-
ione
[
0
][
1
]
*
ione
[
1
][
0
]);
vvib
=
inverse
[
0
][
0
]
*
dvx
+
inverse
[
0
][
1
]
*
dvy
+
inverse
[
0
][
2
]
*
dvz
;
vrotsq
=
(
inverse
[
1
][
0
]
*
dvx
+
inverse
[
1
][
1
]
*
dvy
+
inverse
[
1
][
2
]
*
dvz
)
*
(
inverse
[
1
][
0
]
*
dvx
+
inverse
[
1
][
1
]
*
dvy
+
inverse
[
1
][
2
]
*
dvz
)
+
(
inverse
[
2
][
0
]
*
dvx
+
inverse
[
2
][
1
]
*
dvy
+
inverse
[
2
][
2
]
*
dvz
)
*
(
inverse
[
2
][
0
]
*
dvx
+
inverse
[
2
][
1
]
*
dvy
+
inverse
[
2
][
2
]
*
dvz
);
if
(
rmass
)
massreduced
=
rmass
[
atom1
]
*
rmass
[
atom2
]
/
(
rmass
[
atom1
]
+
rmass
[
atom2
]);
else
massreduced
=
mass
[
type
[
atom1
]]
*
mass
[
type
[
atom2
]]
/
(
mass
[
type
[
atom1
]]
+
mass
[
type
[
atom2
]]);
engvib
=
0.5
*
massreduced
*
vvib
*
vvib
*
force
->
mvv2e
;
engrot
=
0.5
*
massreduced
*
vrotsq
*
force
->
mvv2e
;
break
;
}
}
if
(
nvalues
==
1
)
ptr
=
&
vector
[
m
];
else
ptr
=
array
[
m
];
for
(
n
=
0
;
n
<
nvalues
;
n
++
)
{
switch
(
bstyle
[
n
])
{
case
DIST:
ptr
[
n
]
=
sqrt
(
rsq
);
break
;
case
ENGPOT:
ptr
[
n
]
=
engpot
;
break
;
case
FORCE:
ptr
[
n
]
=
sqrt
(
rsq
)
*
fbond
;
break
;
case
VELVIB:
ptr
[
n
]
=
vvib
;
break
;
case
VELROT:
ptr
[
n
]
=
sqrt
(
vrotsq
);
break
;
case
ENGTRANS:
ptr
[
n
]
=
engtrans
;
break
;
case
ENGVIB:
ptr
[
n
]
=
engvib
;
break
;
case
ENGROT:
ptr
[
n
]
=
engrot
;
break
;
}
}
}
m
++
;
}
}
return
m
;
}
/* ---------------------------------------------------------------------- */
void
ComputeBondLocal
::
reallocate
(
int
n
)
{
// grow vector or array and indices array
while
(
nmax
<
n
)
nmax
+=
DELTA
;
if
(
nvalues
==
1
)
{
memory
->
destroy
(
vector
);
memory
->
create
(
vector
,
nmax
,
"bond/local:vector"
);
vector_local
=
vector
;
}
else
{
memory
->
destroy
(
array
);
memory
->
create
(
array
,
nmax
,
nvalues
,
"bond/local:array"
);
array_local
=
array
;
}
}
/* ----------------------------------------------------------------------
memory usage of local data
------------------------------------------------------------------------- */
double
ComputeBondLocal
::
memory_usage
()
{
double
bytes
=
nmax
*
nvalues
*
sizeof
(
double
);
return
bytes
;
}
Event Timeline
Log In to Comment