Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90812704
replicate.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 00:02
Size
11 KB
Mime Type
text/x-c
Expires
Thu, Nov 7, 00:02 (2 d)
Engine
blob
Format
Raw Data
Handle
22110689
Attached To
rLAMMPS lammps
replicate.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "stdlib.h"
#include "string.h"
#include "replicate.h"
#include "atom.h"
#include "atom_vec.h"
#include "atom_vec_hybrid.h"
#include "force.h"
#include "domain.h"
#include "comm.h"
#include "special.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
#define LB_FACTOR 1.1
#define MAXATOMS 0x7FFFFFFF
#define EPSILON 1.0e-6
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/* ---------------------------------------------------------------------- */
Replicate
::
Replicate
(
LAMMPS
*
lmp
)
:
Pointers
(
lmp
)
{}
/* ---------------------------------------------------------------------- */
void
Replicate
::
command
(
int
narg
,
char
**
arg
)
{
int
i
,
j
,
m
,
n
;
if
(
domain
->
box_exist
==
0
)
error
->
all
(
"Replicate command before simulation box is defined"
);
if
(
narg
!=
3
)
error
->
all
(
"Illegal replicate command"
);
int
me
=
comm
->
me
;
int
nprocs
=
comm
->
nprocs
;
if
(
me
==
0
&&
screen
)
fprintf
(
screen
,
"Replicating atoms ...
\n
"
);
// nrep = total # of replications
int
nx
=
atoi
(
arg
[
0
]);
int
ny
=
atoi
(
arg
[
1
]);
int
nz
=
atoi
(
arg
[
2
]);
int
nrep
=
nx
*
ny
*
nz
;
// error and warning checks
if
(
nx
<=
0
||
ny
<=
0
||
nz
<=
0
)
error
->
all
(
"Illegal replicate command"
);
if
(
domain
->
dimension
==
2
&&
nz
!=
1
)
error
->
all
(
"Cannot replicate 2d simulation in z dimension"
);
if
((
nx
>
1
&&
domain
->
xperiodic
==
0
)
||
(
ny
>
1
&&
domain
->
yperiodic
==
0
)
||
(
nz
>
1
&&
domain
->
zperiodic
==
0
))
error
->
warning
(
"Replicating in a non-periodic dimension"
);
if
(
atom
->
nextra_grow
||
atom
->
nextra_restart
||
atom
->
nextra_store
)
error
->
all
(
"Cannot replicate with fixes that store atom quantities"
);
// maxtag = largest atom tag across all existing atoms
int
maxtag
=
0
;
for
(
i
=
0
;
i
<
atom
->
nlocal
;
i
++
)
maxtag
=
MAX
(
atom
->
tag
[
i
],
maxtag
);
int
maxtag_all
;
MPI_Allreduce
(
&
maxtag
,
&
maxtag_all
,
1
,
MPI_INT
,
MPI_MAX
,
world
);
maxtag
=
maxtag_all
;
// maxmol = largest molecule tag across all existing atoms
int
maxmol
=
0
;
if
(
atom
->
molecular
)
{
for
(
i
=
0
;
i
<
atom
->
nlocal
;
i
++
)
maxmol
=
MAX
(
atom
->
molecule
[
i
],
maxmol
);
int
maxmol_all
;
MPI_Allreduce
(
&
maxmol
,
&
maxmol_all
,
1
,
MPI_INT
,
MPI_MAX
,
world
);
maxmol
=
maxmol_all
;
}
// unmap existing atoms via image flags
for
(
i
=
0
;
i
<
atom
->
nlocal
;
i
++
)
domain
->
unmap
(
atom
->
x
[
i
],
atom
->
image
[
i
]);
// communication buffer for all my atom's info
// max_size = largest buffer needed by any proc
// must do before new Atom class created,
// since size_restart() uses atom->nlocal
int
max_size
;
int
send_size
=
atom
->
avec
->
size_restart
();
MPI_Allreduce
(
&
send_size
,
&
max_size
,
1
,
MPI_INT
,
MPI_MAX
,
world
);
double
*
buf
=
(
double
*
)
memory
->
smalloc
(
max_size
*
sizeof
(
double
),
"replicate:buf"
);
// old = original atom class
// atom = new replicated atom class
// if old atom style was hybrid, pass sub-style names to create_avec
Atom
*
old
=
atom
;
atom
=
new
Atom
(
lmp
);
atom
->
settings
(
old
);
int
nstyles
=
0
;
char
**
keywords
=
NULL
;
if
(
strcmp
(
old
->
atom_style
,
"hybrid"
)
==
0
)
{
AtomVecHybrid
*
avec_hybrid
=
(
AtomVecHybrid
*
)
old
->
avec
;
nstyles
=
avec_hybrid
->
nstyles
;
keywords
=
avec_hybrid
->
keywords
;
}
atom
->
create_avec
(
old
->
atom_style
,
nstyles
,
keywords
);
// check that new problem size will not be too large
// if N > 2^31, turn off tags
// if molecular, N/Nbonds/etc cannot be > 2^31 else tags/counts invalid
double
rep
=
nrep
;
if
(
rep
*
old
->
natoms
>
MAXATOMS
)
atom
->
tag_enable
=
0
;
if
(
atom
->
molecular
)
{
if
(
rep
*
old
->
natoms
>
MAXATOMS
||
rep
*
old
->
nbonds
>
MAXATOMS
||
rep
*
old
->
nangles
>
MAXATOMS
||
rep
*
old
->
ndihedrals
>
MAXATOMS
||
rep
*
old
->
nimpropers
>
MAXATOMS
)
error
->
all
(
"Too big a problem to replicate with molecular atom style"
);
}
// assign atom and topology counts in new class from old one
atom
->
natoms
=
old
->
natoms
*
nrep
;
atom
->
nbonds
=
old
->
nbonds
*
nrep
;
atom
->
nangles
=
old
->
nangles
*
nrep
;
atom
->
ndihedrals
=
old
->
ndihedrals
*
nrep
;
atom
->
nimpropers
=
old
->
nimpropers
*
nrep
;
atom
->
ntypes
=
old
->
ntypes
;
atom
->
nbondtypes
=
old
->
nbondtypes
;
atom
->
nangletypes
=
old
->
nangletypes
;
atom
->
ndihedraltypes
=
old
->
ndihedraltypes
;
atom
->
nimpropertypes
=
old
->
nimpropertypes
;
atom
->
bond_per_atom
=
old
->
bond_per_atom
;
atom
->
angle_per_atom
=
old
->
angle_per_atom
;
atom
->
dihedral_per_atom
=
old
->
dihedral_per_atom
;
atom
->
improper_per_atom
=
old
->
improper_per_atom
;
// store old simulation box
int
triclinic
=
domain
->
triclinic
;
double
old_xprd
=
domain
->
xprd
;
double
old_yprd
=
domain
->
yprd
;
double
old_zprd
=
domain
->
zprd
;
double
old_xy
=
domain
->
xy
;
double
old_xz
=
domain
->
xz
;
double
old_yz
=
domain
->
yz
;
// setup new simulation box
domain
->
boxhi
[
0
]
=
domain
->
boxlo
[
0
]
+
nx
*
old_xprd
;
domain
->
boxhi
[
1
]
=
domain
->
boxlo
[
1
]
+
ny
*
old_yprd
;
domain
->
boxhi
[
2
]
=
domain
->
boxlo
[
2
]
+
nz
*
old_zprd
;
if
(
triclinic
)
{
domain
->
xy
*=
ny
;
domain
->
xz
*=
nz
;
domain
->
yz
*=
nz
;
}
// new problem setup using new box boundaries
if
(
nprocs
==
1
)
n
=
static_cast
<
int
>
(
atom
->
natoms
);
else
n
=
static_cast
<
int
>
(
LB_FACTOR
*
atom
->
natoms
/
nprocs
);
atom
->
allocate_type_arrays
();
atom
->
avec
->
grow
(
n
);
n
=
atom
->
nmax
;
domain
->
print_box
(
" "
);
domain
->
set_initial_box
();
domain
->
set_global_box
();
comm
->
set_procs
();
domain
->
set_local_box
();
// copy type arrays to new atom class
if
(
atom
->
mass
)
{
for
(
int
itype
=
1
;
itype
<=
atom
->
ntypes
;
itype
++
)
{
atom
->
mass_setflag
[
itype
]
=
old
->
mass_setflag
[
itype
];
if
(
atom
->
mass_setflag
[
itype
])
atom
->
mass
[
itype
]
=
old
->
mass
[
itype
];
}
}
if
(
atom
->
dipole
)
{
for
(
int
itype
=
1
;
itype
<=
atom
->
ntypes
;
itype
++
)
{
atom
->
dipole_setflag
[
itype
]
=
old
->
dipole_setflag
[
itype
];
if
(
atom
->
dipole_setflag
[
itype
])
atom
->
dipole
[
itype
]
=
old
->
dipole
[
itype
];
}
}
// set bounds for my proc
// if periodic and I am lo/hi proc, adjust bounds by EPSILON
// insures all replicated atoms will be owned even with round-off
double
sublo
[
3
],
subhi
[
3
];
if
(
triclinic
==
0
)
{
sublo
[
0
]
=
domain
->
sublo
[
0
];
subhi
[
0
]
=
domain
->
subhi
[
0
];
sublo
[
1
]
=
domain
->
sublo
[
1
];
subhi
[
1
]
=
domain
->
subhi
[
1
];
sublo
[
2
]
=
domain
->
sublo
[
2
];
subhi
[
2
]
=
domain
->
subhi
[
2
];
}
else
{
sublo
[
0
]
=
domain
->
sublo_lamda
[
0
];
subhi
[
0
]
=
domain
->
subhi_lamda
[
0
];
sublo
[
1
]
=
domain
->
sublo_lamda
[
1
];
subhi
[
1
]
=
domain
->
subhi_lamda
[
1
];
sublo
[
2
]
=
domain
->
sublo_lamda
[
2
];
subhi
[
2
]
=
domain
->
subhi_lamda
[
2
];
}
if
(
domain
->
xperiodic
)
{
if
(
comm
->
myloc
[
0
]
==
0
)
sublo
[
0
]
-=
EPSILON
;
if
(
comm
->
myloc
[
0
]
==
comm
->
procgrid
[
0
]
-
1
)
subhi
[
0
]
+=
EPSILON
;
}
if
(
domain
->
yperiodic
)
{
if
(
comm
->
myloc
[
1
]
==
0
)
sublo
[
1
]
-=
EPSILON
;
if
(
comm
->
myloc
[
1
]
==
comm
->
procgrid
[
1
]
-
1
)
subhi
[
1
]
+=
EPSILON
;
}
if
(
domain
->
zperiodic
)
{
if
(
comm
->
myloc
[
2
]
==
0
)
sublo
[
2
]
-=
EPSILON
;
if
(
comm
->
myloc
[
2
]
==
comm
->
procgrid
[
2
]
-
1
)
subhi
[
2
]
+=
EPSILON
;
}
// loop over all procs
// if this iteration of loop is me:
// pack my unmapped atom data into buf
// bcast it to all other procs
// performs 3d replicate loop with while loop over atoms in buf
// x = new replicated position, remapped into simulation box
// unpack atom into new atom class from buf if I own it
// adjust tag, mol #, coord, topology info as needed
AtomVec
*
old_avec
=
old
->
avec
;
AtomVec
*
avec
=
atom
->
avec
;
int
ix
,
iy
,
iz
,
image
,
atom_offset
,
mol_offset
;
double
x
[
3
],
lamda
[
3
];
double
*
coord
;
int
tag_enable
=
atom
->
tag_enable
;
for
(
int
iproc
=
0
;
iproc
<
nprocs
;
iproc
++
)
{
if
(
me
==
iproc
)
{
n
=
0
;
for
(
i
=
0
;
i
<
old
->
nlocal
;
i
++
)
n
+=
old_avec
->
pack_restart
(
i
,
&
buf
[
n
]);
}
MPI_Bcast
(
&
n
,
1
,
MPI_INT
,
iproc
,
world
);
MPI_Bcast
(
buf
,
n
,
MPI_DOUBLE
,
iproc
,
world
);
for
(
ix
=
0
;
ix
<
nx
;
ix
++
)
{
for
(
iy
=
0
;
iy
<
ny
;
iy
++
)
{
for
(
iz
=
0
;
iz
<
nz
;
iz
++
)
{
// while loop over one proc's atom list
m
=
0
;
while
(
m
<
n
)
{
image
=
(
512
<<
20
)
|
(
512
<<
10
)
|
512
;
if
(
triclinic
==
0
)
{
x
[
0
]
=
buf
[
m
+
1
]
+
ix
*
old_xprd
;
x
[
1
]
=
buf
[
m
+
2
]
+
iy
*
old_yprd
;
x
[
2
]
=
buf
[
m
+
3
]
+
iz
*
old_zprd
;
}
else
{
x
[
0
]
=
buf
[
m
+
1
]
+
ix
*
old_xprd
+
iy
*
old_xy
+
iz
*
old_xz
;
x
[
1
]
=
buf
[
m
+
2
]
+
iy
*
old_yprd
+
iz
*
old_yz
;
x
[
2
]
=
buf
[
m
+
3
]
+
iz
*
old_zprd
;
}
domain
->
remap
(
x
,
image
);
if
(
triclinic
)
{
domain
->
x2lamda
(
x
,
lamda
);
coord
=
lamda
;
}
else
coord
=
x
;
if
(
coord
[
0
]
>=
sublo
[
0
]
&&
coord
[
0
]
<
subhi
[
0
]
&&
coord
[
1
]
>=
sublo
[
1
]
&&
coord
[
1
]
<
subhi
[
1
]
&&
coord
[
2
]
>=
sublo
[
2
]
&&
coord
[
2
]
<
subhi
[
2
])
{
m
+=
avec
->
unpack_restart
(
&
buf
[
m
]);
i
=
atom
->
nlocal
-
1
;
if
(
tag_enable
)
atom_offset
=
iz
*
ny
*
nx
*
maxtag
+
iy
*
nx
*
maxtag
+
ix
*
maxtag
;
else
atom_offset
=
0
;
mol_offset
=
iz
*
ny
*
nx
*
maxmol
+
iy
*
nx
*
maxmol
+
ix
*
maxmol
;
atom
->
x
[
i
][
0
]
=
x
[
0
];
atom
->
x
[
i
][
1
]
=
x
[
1
];
atom
->
x
[
i
][
2
]
=
x
[
2
];
atom
->
tag
[
i
]
+=
atom_offset
;
atom
->
image
[
i
]
=
image
;
if
(
atom
->
molecular
)
{
if
(
atom
->
molecule
[
i
]
>
0
)
atom
->
molecule
[
i
]
+=
mol_offset
;
if
(
atom
->
avec
->
bonds_allow
)
for
(
j
=
0
;
j
<
atom
->
num_bond
[
i
];
j
++
)
atom
->
bond_atom
[
i
][
j
]
+=
atom_offset
;
if
(
atom
->
avec
->
angles_allow
)
for
(
j
=
0
;
j
<
atom
->
num_angle
[
i
];
j
++
)
{
atom
->
angle_atom1
[
i
][
j
]
+=
atom_offset
;
atom
->
angle_atom2
[
i
][
j
]
+=
atom_offset
;
atom
->
angle_atom3
[
i
][
j
]
+=
atom_offset
;
}
if
(
atom
->
avec
->
dihedrals_allow
)
for
(
j
=
0
;
j
<
atom
->
num_dihedral
[
i
];
j
++
)
{
atom
->
dihedral_atom1
[
i
][
j
]
+=
atom_offset
;
atom
->
dihedral_atom2
[
i
][
j
]
+=
atom_offset
;
atom
->
dihedral_atom3
[
i
][
j
]
+=
atom_offset
;
atom
->
dihedral_atom4
[
i
][
j
]
+=
atom_offset
;
}
if
(
atom
->
avec
->
impropers_allow
)
for
(
j
=
0
;
j
<
atom
->
num_improper
[
i
];
j
++
)
{
atom
->
improper_atom1
[
i
][
j
]
+=
atom_offset
;
atom
->
improper_atom2
[
i
][
j
]
+=
atom_offset
;
atom
->
improper_atom3
[
i
][
j
]
+=
atom_offset
;
atom
->
improper_atom4
[
i
][
j
]
+=
atom_offset
;
}
}
}
else
m
+=
static_cast
<
int
>
(
buf
[
m
]);
}
}
}
}
}
// end of proc loop
// free communication buffer and old atom class
memory
->
sfree
(
buf
);
delete
old
;
// check that all atoms were assigned to procs
double
natoms
;
double
rlocal
=
atom
->
nlocal
;
MPI_Allreduce
(
&
rlocal
,
&
natoms
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
me
==
0
)
{
if
(
screen
)
fprintf
(
screen
,
" %.15g atoms
\n
"
,
natoms
);
if
(
logfile
)
fprintf
(
logfile
,
" %.15g atoms
\n
"
,
natoms
);
}
if
(
natoms
!=
atom
->
natoms
)
error
->
all
(
"Replicate did not assign all atoms correctly"
);
if
(
me
==
0
)
{
if
(
atom
->
nbonds
)
{
if
(
screen
)
fprintf
(
screen
,
" %d bonds
\n
"
,
atom
->
nbonds
);
if
(
logfile
)
fprintf
(
logfile
,
" %d bonds
\n
"
,
atom
->
nbonds
);
}
if
(
atom
->
nangles
)
{
if
(
screen
)
fprintf
(
screen
,
" %d angles
\n
"
,
atom
->
nangles
);
if
(
logfile
)
fprintf
(
logfile
,
" %d angles
\n
"
,
atom
->
nangles
);
}
if
(
atom
->
ndihedrals
)
{
if
(
screen
)
fprintf
(
screen
,
" %d dihedrals
\n
"
,
atom
->
ndihedrals
);
if
(
logfile
)
fprintf
(
logfile
,
" %d dihedrals
\n
"
,
atom
->
ndihedrals
);
}
if
(
atom
->
nimpropers
)
{
if
(
screen
)
fprintf
(
screen
,
" %d impropers
\n
"
,
atom
->
nimpropers
);
if
(
logfile
)
fprintf
(
logfile
,
" %d impropers
\n
"
,
atom
->
nimpropers
);
}
}
// create global mapping and bond topology now that system is defined
if
(
atom
->
map_style
)
{
atom
->
nghost
=
0
;
atom
->
map_init
();
atom
->
map_set
();
}
if
(
atom
->
molecular
)
{
Special
special
(
lmp
);
special
.
build
();
}
}
Event Timeline
Log In to Comment