Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90415853
abf_data.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 11:50
Size
9 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 11:50 (2 d)
Engine
blob
Format
Raw Data
Handle
22025602
Attached To
rLAMMPS lammps
abf_data.cpp
View Options
#include "abf_data.h"
#include <fstream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <ctime>
/// Construct gradient field object from an ABF-saved file
ABFdata
::
ABFdata
(
const
char
*
gradFileName
)
{
std
::
ifstream
gradFile
;
std
::
ifstream
countFile
;
int
n
;
char
hash
;
double
xi
;
char
*
countFileName
;
countFileName
=
new
char
[
strlen
(
gradFileName
)
+
2
];
strcpy
(
countFileName
,
gradFileName
);
countFileName
[
strlen
(
gradFileName
)
-
4
]
=
'\0'
;
strcat
(
countFileName
,
"count"
);
std
::
cout
<<
"Opening file "
<<
gradFileName
<<
" for reading
\n
"
;
gradFile
.
open
(
gradFileName
);
if
(
!
gradFile
.
good
())
{
std
::
cerr
<<
"Cannot read from file "
<<
gradFileName
<<
", aborting
\n
"
;
exit
(
1
);
}
gradFile
>>
hash
;
if
(
hash
!=
'#'
)
{
std
::
cerr
<<
"Missing
\'
#
\'
sign in gradient file
\n
"
;
exit
(
1
);
}
gradFile
>>
Nvars
;
std
::
cout
<<
"Number of variables: "
<<
Nvars
<<
"
\n
"
;
sizes
=
new
int
[
Nvars
];
blocksizes
=
new
int
[
Nvars
];
PBC
=
new
int
[
Nvars
];
widths
=
new
double
[
Nvars
];
mins
=
new
double
[
Nvars
];
scalar_dim
=
1
;
// total is (n1 * n2 * ... * n_Nvars )
for
(
int
i
=
0
;
i
<
Nvars
;
i
++
)
{
gradFile
>>
hash
;
if
(
hash
!=
'#'
)
{
std
::
cerr
<<
"Missing
\'
#
\'
sign in gradient file
\n
"
;
exit
(
1
);
}
// format is: xiMin dxi Nbins PBCflag
gradFile
>>
mins
[
i
]
>>
widths
[
i
]
>>
sizes
[
i
]
>>
PBC
[
i
];
std
::
cout
<<
"min = "
<<
mins
[
i
]
<<
" width = "
<<
widths
[
i
]
<<
" n = "
<<
sizes
[
i
]
<<
" PBC: "
<<
(
PBC
[
i
]
?
"yes"
:
"no"
)
<<
"
\n
"
;
if
(
sizes
[
i
]
==
0
)
{
std
::
cout
<<
"ERROR: size should not be zero!
\n
"
;
exit
(
1
);
}
scalar_dim
*=
sizes
[
i
];
}
// block sizes, smallest for the last dimension
blocksizes
[
Nvars
-
1
]
=
1
;
for
(
int
i
=
Nvars
-
2
;
i
>=
0
;
i
--
)
{
blocksizes
[
i
]
=
blocksizes
[
i
+
1
]
*
sizes
[
i
+
1
];
}
vec_dim
=
scalar_dim
*
Nvars
;
//std::cout << "Gradient field has length " << vec_dim << "\n";
gradients
=
new
double
[
vec_dim
];
estimate
=
new
double
[
vec_dim
];
deviation
=
new
double
[
vec_dim
];
count
=
new
unsigned
int
[
scalar_dim
];
int
*
pos
=
new
int
[
Nvars
];
for
(
int
i
=
0
;
i
<
Nvars
;
i
++
)
pos
[
i
]
=
0
;
for
(
unsigned
int
i
=
0
;
i
<
scalar_dim
;
i
++
)
{
// Here we do the Euclidian division iteratively
for
(
int
k
=
Nvars
-
1
;
k
>
0
;
k
--
)
{
if
(
pos
[
k
]
==
sizes
[
k
])
{
pos
[
k
]
=
0
;
pos
[
k
-
1
]
++
;
}
}
for
(
unsigned
int
j
=
0
;
j
<
Nvars
;
j
++
)
{
// Read values of the collective variables only to check for consistency with grid
gradFile
>>
xi
;
double
rel_diff
=
(
mins
[
j
]
+
widths
[
j
]
*
(
pos
[
j
]
+
0.5
)
-
xi
)
/
widths
[
j
];
if
(
rel_diff
*
rel_diff
>
1e-12
)
{
std
::
cout
<<
"
\n
ERROR: wrong coordinates in gradient file
\n
"
;
std
::
cout
<<
"Expected "
<<
mins
[
j
]
+
widths
[
j
]
*
(
pos
[
j
]
+
0.5
)
<<
", got "
<<
xi
<<
std
::
endl
;
exit
(
1
);
}
}
for
(
unsigned
int
j
=
0
;
j
<
Nvars
;
j
++
)
{
// Read and store gradients
if
(
!
(
gradFile
>>
gradients
[
i
*
Nvars
+
j
])
)
{
std
::
cout
<<
"
\n
ERROR: could not read gradient data
\n
"
;
exit
(
1
);
}
}
pos
[
Nvars
-
1
]
++
;
// move on to next position
}
// check for end of file
if
(
gradFile
>>
xi
)
{
std
::
cout
<<
"
\n
ERROR: extraneous data at end of gradient file
\n
"
;
exit
(
1
);
}
gradFile
.
close
();
std
::
cout
<<
"Opening file "
<<
countFileName
<<
" for reading
\n
"
;
countFile
.
open
(
countFileName
);
if
(
!
countFile
.
good
())
{
std
::
cerr
<<
"Cannot read from file "
<<
countFileName
<<
", aborting
\n
"
;
exit
(
1
);
}
countFile
>>
hash
;
if
(
hash
!=
'#'
)
{
std
::
cerr
<<
"Missing
\'
#
\'
sign in count file
\n
"
;
exit
(
1
);
}
countFile
>>
Nvars
;
for
(
int
i
=
0
;
i
<
Nvars
;
i
++
)
{
countFile
>>
hash
;
if
(
hash
!=
'#'
)
{
std
::
cerr
<<
"Missing
\'
#
\'
sign in gradient file
\n
"
;
exit
(
1
);
}
countFile
>>
mins
[
i
]
>>
widths
[
i
]
>>
sizes
[
i
]
>>
PBC
[
i
];
}
for
(
unsigned
int
i
=
0
;
i
<
scalar_dim
;
i
++
)
{
for
(
unsigned
int
j
=
0
;
j
<
Nvars
;
j
++
)
{
// Read and ignore values of the collective variables
countFile
>>
xi
;
}
// Read and store counts
countFile
>>
count
[
i
];
}
// Could check for end-of-file string here
countFile
.
close
();
delete
[]
countFileName
;
// for metadynamics
bias
=
new
double
[
scalar_dim
];
histogram
=
new
unsigned
int
[
scalar_dim
];
for
(
unsigned
int
i
=
0
;
i
<
scalar_dim
;
i
++
)
{
histogram
[
i
]
=
0
;
bias
[
i
]
=
0.0
;
}
}
ABFdata
::~
ABFdata
()
{
delete
[]
sizes
;
delete
[]
blocksizes
;
delete
[]
PBC
;
delete
[]
widths
;
delete
[]
mins
;
delete
[]
gradients
;
delete
[]
estimate
;
delete
[]
deviation
;
delete
[]
count
;
delete
[]
bias
;
delete
[]
histogram
;
}
unsigned
int
ABFdata
::
offset
(
const
int
*
pos
)
{
unsigned
int
index
=
0
;
for
(
int
i
=
0
;
i
<
Nvars
;
i
++
)
{
// Check for out-of bounds indices here
if
(
pos
[
i
]
<
0
||
pos
[
i
]
>=
sizes
[
i
])
{
std
::
cerr
<<
"Out-of-range index: "
<<
pos
[
i
]
<<
" for rank "
<<
i
<<
"
\n
"
;
exit
(
1
);
}
index
+=
blocksizes
[
i
]
*
pos
[
i
];
}
// we leave the multiplication below for the caller to do
// we just give the offset for scalar fields
// index *= Nvars; // Nb of gradient vectors -> nb of array elts
return
index
;
}
void
ABFdata
::
write_histogram
(
const
char
*
fileName
)
{
std
::
ofstream
os
;
unsigned
int
index
;
int
*
pos
,
i
;
os
.
open
(
fileName
);
if
(
!
os
.
good
())
{
std
::
cerr
<<
"Cannot write to file "
<<
fileName
<<
", aborting
\n
"
;
exit
(
1
);
}
pos
=
new
int
[
Nvars
];
for
(
i
=
0
;
i
<
Nvars
;
i
++
)
pos
[
i
]
=
0
;
for
(
index
=
0
;
index
<
scalar_dim
;
index
++
)
{
// Here we do the Euclidian division iteratively
for
(
i
=
Nvars
-
1
;
i
>
0
;
i
--
)
{
if
(
pos
[
i
]
==
sizes
[
i
])
{
pos
[
i
]
=
0
;
pos
[
i
-
1
]
++
;
os
<<
"
\n
"
;
}
}
// Now a stupid check:
if
(
index
!=
offset
(
pos
))
{
std
::
cerr
<<
"Wrong position vector at index "
<<
index
<<
"
\n
"
;
exit
(
1
);
}
for
(
i
=
0
;
i
<
Nvars
;
i
++
)
{
os
<<
mins
[
i
]
+
widths
[
i
]
*
(
pos
[
i
]
+
0.5
)
<<
" "
;
}
os
<<
histogram
[
index
]
<<
"
\n
"
;
pos
[
Nvars
-
1
]
++
;
// move on to next position
}
os
.
close
();
delete
[]
pos
;
}
void
ABFdata
::
write_bias
(
const
char
*
fileName
)
{
// write the opposite of the bias, with global minimum set to 0
std
::
ofstream
os
;
unsigned
int
index
;
int
*
pos
,
i
;
double
minbias
,
maxbias
;
os
.
open
(
fileName
);
if
(
!
os
.
good
())
{
std
::
cerr
<<
"Cannot write to file "
<<
fileName
<<
", aborting
\n
"
;
exit
(
1
);
}
pos
=
new
int
[
Nvars
];
for
(
i
=
0
;
i
<
Nvars
;
i
++
)
pos
[
i
]
=
0
;
// Set the minimum value to 0 by subtracting each value from the max
maxbias
=
bias
[
0
];
for
(
index
=
0
;
index
<
scalar_dim
;
index
++
)
{
if
(
bias
[
index
]
>
maxbias
)
maxbias
=
bias
[
index
];
}
// Set the maximum value to that of the lowest nonzero bias
minbias
=
bias
[
0
];
for
(
index
=
0
;
index
<
scalar_dim
;
index
++
)
{
if
(
minbias
==
0.0
||
(
bias
[
index
]
>
0.0
&&
bias
[
index
]
<
minbias
))
minbias
=
bias
[
index
];
}
for
(
index
=
0
;
index
<
scalar_dim
;
index
++
)
{
// Here we do the Euclidian division iteratively
for
(
i
=
Nvars
-
1
;
i
>
0
;
i
--
)
{
if
(
pos
[
i
]
==
sizes
[
i
])
{
pos
[
i
]
=
0
;
pos
[
i
-
1
]
++
;
os
<<
"
\n
"
;
}
}
// Now a stupid check:
if
(
index
!=
offset
(
pos
))
{
std
::
cerr
<<
"Wrong position vector at index "
<<
index
<<
"
\n
"
;
exit
(
1
);
}
for
(
i
=
0
;
i
<
Nvars
;
i
++
)
{
os
<<
mins
[
i
]
+
widths
[
i
]
*
(
pos
[
i
]
+
0.5
)
<<
" "
;
}
os
<<
maxbias
-
(
bias
[
index
]
>
0.0
?
bias
[
index
]
:
minbias
)
<<
"
\n
"
;
pos
[
Nvars
-
1
]
++
;
// move on to next position
}
os
.
close
();
delete
[]
pos
;
}
void
ABFdata
::
write_field
(
double
*
field
,
const
char
*
fileName
)
{
std
::
ofstream
os
;
unsigned
int
index
;
int
*
pos
,
i
;
double
*
f
;
os
.
open
(
fileName
);
if
(
!
os
.
good
())
{
std
::
cerr
<<
"Cannot write to file "
<<
fileName
<<
", aborting
\n
"
;
exit
(
1
);
}
pos
=
new
int
[
Nvars
];
for
(
i
=
0
;
i
<
Nvars
;
i
++
)
pos
[
i
]
=
0
;
// start at beginning of array
f
=
field
;
for
(
index
=
0
;
index
<
scalar_dim
;
index
++
)
{
// Here we do the Euclidian division iteratively
for
(
i
=
Nvars
-
1
;
i
>
0
;
i
--
)
{
if
(
pos
[
i
]
==
sizes
[
i
])
{
pos
[
i
]
=
0
;
pos
[
i
-
1
]
++
;
os
<<
"
\n
"
;
}
}
for
(
i
=
0
;
i
<
Nvars
;
i
++
)
{
os
<<
mins
[
i
]
+
widths
[
i
]
*
(
pos
[
i
]
+
0.5
)
<<
" "
;
}
for
(
i
=
0
;
i
<
Nvars
;
i
++
)
{
os
<<
f
[
i
]
<<
" "
;;
}
os
<<
"
\n
"
;
pos
[
Nvars
-
1
]
++
;
// move on to next position...
f
+=
Nvars
;
// ...also in the array
}
os
.
close
();
delete
[]
pos
;
}
Event Timeline
Log In to Comment