<p>You must also use the <a class="reference internal" href="package.html"><em>package gpu</em></a> command to enable the
GPU package, unless the “-sf gpu” or “-pk gpu” <a class="reference internal" href="Section_start.html#start-7"><span>command-line switches</span></a> were used. It specifies the
number of GPUs/node to use, as well as other options.</p>
<p><strong>Speed-ups to expect:</strong></p>
<p>The performance of a GPU versus a multi-core CPU is a function of your
hardware, which pair style is used, the number of atoms/GPU, and the
precision used on the GPU (double, single, mixed).</p>
<p>See the <a class="reference external" href="http://lammps.sandia.gov/bench.html">Benchmark page</a> of the
LAMMPS web site for performance of the GPU package on various
hardware, including the Titan HPC platform at ORNL.</p>
<p>You should also experiment with how many MPI tasks per GPU to use to
give the best performance for your problem and machine. This is also
a function of the problem size and the pair style being using.
Likewise, you should experiment with the precision setting for the GPU
library to see if single or mixed precision will give accurate
results, since they will typically be faster.</p>
<p><strong>Guidelines for best performance:</strong></p>
<ul class="simple">
<li>Using multiple MPI tasks per GPU will often give the best performance,
as allowed my most multi-core CPU/GPU configurations.</li>
<li>If the number of particles per MPI task is small (e.g. 100s of
particles), it can be more efficient to run with fewer MPI tasks per
GPU, even if you do not use all the cores on the compute node.</li>
<li>The <a class="reference internal" href="package.html"><em>package gpu</em></a> command has several options for tuning
performance. Neighbor lists can be built on the GPU or CPU. Force
calculations can be dynamically balanced across the CPU cores and
GPUs. GPU-specific settings can be made which can be optimized
for different hardware. See the <a class="reference internal" href="package.html"><em>packakge</em></a> command
doc page for details.</li>
<li>As described by the <a class="reference internal" href="package.html"><em>package gpu</em></a> command, GPU
accelerated pair styles can perform computations asynchronously with
CPU computations. The “Pair” time reported by LAMMPS will be the
maximum of the time required to complete the CPU pair style
computations and the time required to complete the GPU pair style
computations. Any time spent for GPU-enabled pair styles for
computations that run simultaneously with <a class="reference internal" href="bond_style.html"><em>bond</em></a>,
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.