pairwise interactions between 1-4 atoms. The energy contribution of
these terms is included in the pair energy, not the dihedral energy.</p>
<p>The KSpace contribution is calculated using the method in
<a class="reference internal" href="compute_stress_atom.html#heyes"><span class="std std-ref">(Heyes)</span></a> for the Ewald method and a related method for PPPM,
as specified by the <a class="reference internal" href="kspace_style.html"><span class="doc">kspace_style pppm</span></a> command.
For PPPM, the calcluation requires 1 extra FFT each timestep that
per-atom energy is calculated. Thie <a class="reference external" href="PDF/kspace.pdf">document</a>
describes how the long-range per-atom energy calculation is performed.</p>
<p>Various fixes can contribute to the per-atom potential energy of the
system if the <em>fix</em> contribution is included. See the doc pages for
<a class="reference internal" href="fix.html"><span class="doc">individual fixes</span></a> for details of which ones compute a
per-atom potential energy.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">The <a class="reference internal" href="fix_modify.html"><span class="doc">fix_modify energy yes</span></a> command must also be
specified if a fix is to contribute per-atom potential energy to this
command.</p>
</div>
<p>As an example of per-atom potential energy compared to total potential
energy, these lines in an input script should yield the same result
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.