Page MenuHomec4science

cuda_pair.cu
No OneTemporary

File Metadata

Created
Tue, Jul 30, 20:26

cuda_pair.cu

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
Original Version:
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
-----------------------------------------------------------------------
USER-CUDA Package and associated modifications:
https://sourceforge.net/projects/lammpscuda/
Christian Trott, christian.trott@tu-ilmenau.de
Lars Winterfeld, lars.winterfeld@tu-ilmenau.de
Theoretical Physics II, University of Technology Ilmenau, Germany
See the README file in the USER-CUDA directory.
This software is distributed under the GNU General Public License.
------------------------------------------------------------------------- */
enum PAIR_FORCES {PAIR_NONE, PAIR_BORN, PAIR_BUCK, PAIR_CG_CMM, PAIR_LJ_CHARMM, PAIR_LJ_CLASS2, PAIR_LJ_CUT, PAIR_LJ_EXPAND, PAIR_LJ_GROMACS, PAIR_LJ_SMOOTH, PAIR_LJ96_CUT, PAIR_MORSE, PAIR_MORSE_R6};
enum COUL_FORCES {COUL_NONE, COUL_CHARMM, COUL_CHARMM_IMPLICIT, COUL_CUT, COUL_LONG, COUL_DEBYE, COUL_GROMACS, COUL_SPECIAL};
#define DATA_NONE 0
#define DATA_V 1
#define DATA_TAG 2
#define DATA_RMASS 4
#define DATA_MASS 8
#define DATA_TORQUE 16
#define DATA_OMEGA 32
#define DATA_RADIUS 64
#define DATA_DENSITY 128
#define DATA_MASK 256
#define DATA_V_RADIUS 512
#define DATA_OMEGA_RMASS 1024
#define NEIGHMASK 0x3FFFFFFF
#define MY_PREFIX cuda_pair
#define IncludeCommonNeigh
#include "cuda_shared.h"
#include "cuda_common.h"
#include "cuda_wrapper_cu.h"
#include "crm_cuda_utils.cu"
//constants used by multiple forces
//general
#define _cutsq MY_AP(cutsq)
#define _offset MY_AP(offset)
#define _special_lj MY_AP(special_lj)
#define _special_coul MY_AP(special_coul)
#define _cutsq_global MY_AP(cutsq_global)
#define _collect_forces_later MY_AP(collect_forces_later)
__device__ __constant__ X_FLOAT _cutsq[CUDA_MAX_TYPES2];
__device__ __constant__ ENERGY_FLOAT _offset[CUDA_MAX_TYPES2];
__device__ __constant__ F_FLOAT _special_lj[4];
__device__ __constant__ F_FLOAT _special_coul[4];
__device__ __constant__ X_FLOAT _cutsq_global;
__device__ __constant__ int _collect_forces_later;
__device__ __constant__ F_FLOAT MY_AP(coeff1)[CUDA_MAX_TYPES2]; //pair force coefficients in case ntypes < CUDA_MAX_TYPES (coeffs fit into constant space)
__device__ __constant__ F_FLOAT MY_AP(coeff2)[CUDA_MAX_TYPES2];
__device__ __constant__ F_FLOAT MY_AP(coeff3)[CUDA_MAX_TYPES2];
__device__ __constant__ F_FLOAT MY_AP(coeff4)[CUDA_MAX_TYPES2];
__device__ __constant__ F_FLOAT MY_AP(coeff5)[CUDA_MAX_TYPES2];
__device__ __constant__ F_FLOAT* MY_AP(coeff1_gm); //pair force coefficients in case ntypes > CUDA_MAX_TYPES (coeffs do not fit into constant space)
__device__ __constant__ F_FLOAT* MY_AP(coeff2_gm);
__device__ __constant__ F_FLOAT* MY_AP(coeff3_gm);
__device__ __constant__ F_FLOAT* MY_AP(coeff4_gm);
__device__ __constant__ F_FLOAT* MY_AP(coeff5_gm);
__device__ __constant__ F_FLOAT* MY_AP(coeff6_gm);
__device__ __constant__ F_FLOAT* MY_AP(coeff7_gm);
__device__ __constant__ F_FLOAT* MY_AP(coeff8_gm);
__device__ __constant__ F_FLOAT* MY_AP(coeff9_gm);
__device__ __constant__ F_FLOAT* MY_AP(coeff10_gm);
#define _coeff1_gm_tex MY_AP(coeff1_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff1_gm_tex;
#else
texture<int2, 1> _coeff1_gm_tex;
#endif
#define _coeff2_gm_tex MY_AP(coeff2_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff2_gm_tex;
#else
texture<int2, 1> _coeff2_gm_tex;
#endif
#define _coeff3_gm_tex MY_AP(coeff3_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff3_gm_tex;
#else
texture<int2, 1> _coeff3_gm_tex;
#endif
#define _coeff4_gm_tex MY_AP(coeff4_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff4_gm_tex;
#else
texture<int2, 1> _coeff4_gm_tex;
#endif
#define _coeff5_gm_tex MY_AP(coeff5_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff5_gm_tex;
#else
texture<int2, 1> _coeff5_gm_tex;
#endif
#define _coeff6_gm_tex MY_AP(coeff6_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff6_gm_tex;
#else
texture<int2, 1> _coeff6_gm_tex;
#endif
#define _coeff7_gm_tex MY_AP(coeff7_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff7_gm_tex;
#else
texture<int2, 1> _coeff7_gm_tex;
#endif
#define _coeff8_gm_tex MY_AP(coeff8_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff8_gm_tex;
#else
texture<int2, 1> _coeff8_gm_tex;
#endif
#define _coeff9_gm_tex MY_AP(coeff9_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff9_gm_tex;
#else
texture<int2, 1> _coeff9_gm_tex;
#endif
#define _coeff10_gm_tex MY_AP(coeff10_gm_tex)
#if F_PRECISION == 1
texture<float> _coeff10_gm_tex;
#else
texture<int2, 1> _coeff10_gm_tex;
#endif
//if more than 5 coefficients are needed for a pair potential add them here
//coulomb
#define _cut_coulsq MY_AP(cut_coulsq)
#define _cut_coulsq_global MY_AP(cut_coulsq_global)
#define _g_ewald MY_AP(g_ewald)
#define _qqrd2e MY_AP(qqrd2e)
#define _kappa MY_AP(kappa)
__device__ __constant__ X_FLOAT _cut_coulsq[CUDA_MAX_TYPES2];
__device__ __constant__ X_FLOAT _cut_coulsq_global;
__device__ __constant__ F_FLOAT _g_ewald;
__device__ __constant__ F_FLOAT _qqrd2e;
__device__ __constant__ F_FLOAT _kappa;
//inner cutoff
#define _cut_innersq MY_AP(cut_innersq)
#define _cut_innersq_global MY_AP(cut_innersq_global)
__device__ __constant__ X_FLOAT _cut_innersq[CUDA_MAX_TYPES2];
__device__ __constant__ X_FLOAT _cut_innersq_global;
template <const PAIR_FORCES pair_type, const COUL_FORCES coul_type, const unsigned int extended_data>
__global__ void Pair_Kernel_TpA(int eflag, int vflag, int eflag_atom, int vflag_atom);
template <const PAIR_FORCES pair_type, const COUL_FORCES coul_type, const unsigned int extended_data>
__global__ void Pair_Kernel_BpA(int eflag, int vflag, int eflag_atom, int vflag_atom);
template <const PAIR_FORCES pair_type, const COUL_FORCES coul_type, const unsigned int extended_data>
__global__ void Pair_Kernel_TpA_opt(int eflag, int vflag, int eflag_atom, int vflag_atom, int comm_phase);
template <const PAIR_FORCES pair_type, const COUL_FORCES coul_type, const unsigned int extended_data>
__global__ void Pair_Kernel_BpA_opt(int eflag, int vflag, int eflag_atom, int vflag_atom, int comm_phase);
#include <stdio.h>
#include "cuda_pair_cu.h"
#include "cuda_pair_virial_kernel_nc.cu"
//Functions which are shared by pair styles
//Update Buffersize
void Cuda_UpdateBuffer(cuda_shared_data* sdata, int size)
{
CUT_CHECK_ERROR("Cuda_Pair_UpdateBuffer_AllStyles: before updateBuffer failed");
if(sdata->buffersize < size) {
MYDBG(printf("Resizing Buffer at %p with %i kB to\n", sdata->buffer, sdata->buffersize);)
CudaWrapper_FreeCudaData(sdata->buffer, sdata->buffersize);
sdata->buffer = CudaWrapper_AllocCudaData(size);
sdata->buffersize = size;
sdata->buffer_new++;
MYDBG(printf("New buffer at %p with %i kB\n", sdata->buffer, sdata->buffersize);)
}
cudaMemcpyToSymbol(MY_AP(buffer), & sdata->buffer, sizeof(int*));
CUT_CHECK_ERROR("Cuda_Pair_UpdateBuffer_AllStyles failed");
}
void Cuda_Pair_UpdateNeighbor_AllStyles(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist)
{
//Neighbor
cudaMemcpyToSymbol(MY_AP(neighbor_maxlocal) , & sneighlist->firstneigh.dim[0] , sizeof(unsigned));
cudaMemcpyToSymbol(MY_AP(firstneigh) , & sneighlist->firstneigh.dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(ilist) , & sneighlist->ilist .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(inum) , & sneighlist->inum , sizeof(int));
cudaMemcpyToSymbol(MY_AP(numneigh) , & sneighlist->numneigh .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(neighbors) , & sneighlist->neighbors .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(maxneighbors) , & sneighlist->maxneighbors , sizeof(int));
cudaMemcpyToSymbol(MY_AP(overlap_comm) , & sdata->overlap_comm, sizeof(int));
if(sdata->overlap_comm) {
cudaMemcpyToSymbol(MY_AP(numneigh_border) , & sneighlist->numneigh_border .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(numneigh_inner) , & sneighlist->numneigh_inner .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(neighbors_border) , & sneighlist->neighbors_border.dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(neighbors_inner) , & sneighlist->neighbors_inner .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(ilist_border) , & sneighlist->ilist_border .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(inum_border) , & sneighlist->inum_border .dev_data, sizeof(int*));
}
}
//Update constants after nmax change which are generally needed by all pair styles
void Cuda_Pair_UpdateNmax_AllStyles(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist)
{
CUT_CHECK_ERROR("Cuda_Pair_UpdateNmax_AllStyles: Begin");
//System
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int));
//Atom
cudaMemcpyToSymbol(MY_AP(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*));
cudaMemcpyToSymbol(MY_AP(x_type) , & sdata->atom.x_type .dev_data, sizeof(X_FLOAT4*));
cudaMemcpyToSymbol(MY_AP(f) , & sdata->atom.f .dev_data, sizeof(F_FLOAT*));
cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(q) , & sdata->atom.q .dev_data, sizeof(F_FLOAT*));
cudaMemcpyToSymbol(MY_AP(tag) , & sdata->atom.tag .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(eatom) , & sdata->atom.eatom .dev_data, sizeof(ENERGY_FLOAT*));
cudaMemcpyToSymbol(MY_AP(vatom) , & sdata->atom.vatom .dev_data, sizeof(ENERGY_FLOAT*));
//Other
cudaMemcpyToSymbol(MY_AP(debugdata) , & sdata->debugdata , sizeof(int*));
CUT_CHECK_ERROR("Cuda_Pair_UpdateNmax_AllStyles: End");
}
//Initialisation of GPU Constants which rarely change
void Cuda_Pair_Init_AllStyles(cuda_shared_data* sdata, int ncoeff, bool need_q = false, bool use_global_params = false, bool need_innercut = false, bool need_cut = true)
{
unsigned cuda_ntypes = sdata->atom.ntypes + 1;
unsigned cuda_ntypes2 = cuda_ntypes * cuda_ntypes;
unsigned n = sizeof(F_FLOAT) * cuda_ntypes2;
unsigned nx = sizeof(X_FLOAT) * cuda_ntypes2;
//check if enough constant memory is available
if((cuda_ntypes2 > CUDA_MAX_TYPES2) && !use_global_params)
printf("# CUDA: Cuda_Pair_Init: you need %u types. this is more than %u "
"(assumed at compile time). re-compile with -DCUDA_MAX_TYPES_PLUS_ONE=32 "
"or ajust this in cuda_common.h\n", cuda_ntypes, CUDA_MAX_TYPES_PLUS_ONE - 1);
if((cuda_ntypes2 > CUDA_MAX_TYPES2) && !use_global_params)
exit(0);
//type conversion of cutoffs and parameters
if(need_cut) {
X_FLOAT cutsq[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
cutsq[i * cuda_ntypes + j] = (X_FLOAT)(sdata->pair.cut_global * sdata->pair.cut_global);
}
}
int cutsqdiffer = 0;
X_FLOAT cutsq_global;
cutsq_global = (X_FLOAT)(sdata->pair.cut_global * sdata->pair.cut_global);
if(sdata->pair.cut) {
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = i; j <= sdata->atom.ntypes; ++j) {
if(sdata->pair.cut[i][j] > 1e-6) {
cutsq[i * cuda_ntypes + j] = (X_FLOAT)(sdata->pair.cut[i][j] * sdata->pair.cut[i][j]);
cutsq[j * cuda_ntypes + i] = (X_FLOAT)(sdata->pair.cut[i][j] * sdata->pair.cut[i][j]);
}
if(i == 1 && j == 1) cutsq_global = cutsq[i * cuda_ntypes + j];
if((cutsq_global - cutsq[i * cuda_ntypes + j]) * (cutsq_global - cutsq[i * cuda_ntypes + j]) > 1e-6)
cutsqdiffer++;
}
}
}
if(sdata->pair.cutsq) {
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = i; j <= sdata->atom.ntypes; ++j) {
if(sdata->pair.cut[i][j] > 1e-6) {
cutsq[i * cuda_ntypes + j] = (X_FLOAT)(sdata->pair.cutsq[i][j]);
cutsq[j * cuda_ntypes + i] = (X_FLOAT)(sdata->pair.cutsq[i][j]);
}
if(i == 1 && j == 1) cutsq_global = cutsq[i * cuda_ntypes + j];
if((cutsq_global - cutsq[i * cuda_ntypes + j]) * (cutsq_global - cutsq[i * cuda_ntypes + j]) > 1e-6)
cutsqdiffer++;
}
}
}
//printf("CUTSQGLOB: %i %e\n",cutsqdiffer,cutsq_global);
if(cutsqdiffer) {
cutsq_global = -1.0;
cudaMemcpyToSymbol(MY_AP(cutsq) , cutsq , nx);
}
cudaMemcpyToSymbol(MY_AP(cutsq_global) , &cutsq_global , sizeof(X_FLOAT));
}
if(need_innercut) {
X_FLOAT cut_innersq[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
cut_innersq[i * cuda_ntypes + j] = (X_FLOAT)(sdata->pair.cut_inner_global * sdata->pair.cut_inner_global);
}
}
int cutsqdiffer = 0;
X_FLOAT cut_innersq_global;
cut_innersq_global = (X_FLOAT)(sdata->pair.cut_inner_global * sdata->pair.cut_inner_global);
if(sdata->pair.cut_inner) {
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = i; j <= sdata->atom.ntypes; ++j) {
if(sdata->pair.cut_inner[i][j] > 1e-6) {
cut_innersq[i * cuda_ntypes + j] = (X_FLOAT)(sdata->pair.cut_inner[i][j] * sdata->pair.cut_inner[i][j]);
cut_innersq[j * cuda_ntypes + i] = (X_FLOAT)(sdata->pair.cut_inner[i][j] * sdata->pair.cut_inner[i][j]);
}
if(i == 1 && j == 1) cut_innersq_global = cut_innersq[i * cuda_ntypes + j];
if((cut_innersq_global - cut_innersq[i * cuda_ntypes + j]) * (cut_innersq_global - cut_innersq[i * cuda_ntypes + j]) > 1e-6)
cutsqdiffer++;
}
}
}
if(cutsqdiffer) {
cut_innersq_global = -1.0;
cudaMemcpyToSymbol(MY_AP(cut_innersq) , cut_innersq , nx);
}
cudaMemcpyToSymbol(MY_AP(cut_innersq_global) , &cut_innersq_global , sizeof(X_FLOAT));
}
if(need_q) {
X_FLOAT cut_coulsq[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
cut_coulsq[i * cuda_ntypes + j] = (X_FLOAT)(sdata->pair.cut_coul_global * sdata->pair.cut_coul_global);
}
}
int cutsqdiffer = 0;
X_FLOAT cut_coulsq_global;
cut_coulsq_global = (X_FLOAT)(sdata->pair.cut_coul_global * sdata->pair.cut_coul_global);
if(sdata->pair.cut_coulsq_global > cut_coulsq_global) cut_coulsq_global = (X_FLOAT) sdata->pair.cut_coulsq_global;
if(sdata->pair.cut_coul) {
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = i; j <= sdata->atom.ntypes; ++j) {
if(sdata->pair.cut_coul[i][j] > 1e-6) {
cut_coulsq[i * cuda_ntypes + j] = (X_FLOAT)(sdata->pair.cut_coul[i][j] * sdata->pair.cut_coul[i][j]);
cut_coulsq[j * cuda_ntypes + i] = (X_FLOAT)(sdata->pair.cut_coul[i][j] * sdata->pair.cut_coul[i][j]);
}
if(i == 1 && j == 1) cut_coulsq_global = cut_coulsq[i * cuda_ntypes + j];
if((cut_coulsq_global - cut_coulsq[i * cuda_ntypes + j]) * (cut_coulsq_global - cut_coulsq[i * cuda_ntypes + j]) > 1e-6)
cutsqdiffer++;
}
}
}
if(cutsqdiffer) {
cut_coulsq_global = -1.0;
cudaMemcpyToSymbol(MY_AP(cut_coulsq) , cut_coulsq , nx);
}
cudaMemcpyToSymbol(MY_AP(cut_coulsq_global), &cut_coulsq_global , sizeof(X_FLOAT));
}
CUT_CHECK_ERROR("Cuda_Pair: init pre Coeff failed");
if(ncoeff > 0) {
F_FLOAT coeff1[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
coeff1[i * cuda_ntypes + j] = (F_FLOAT) sdata->pair.coeff1[i][j];
}
}
if(use_global_params) {
cudaMemcpyToSymbol(MY_AP(coeff1_gm) , &sdata->pair.coeff1_gm.dev_data , sizeof(F_FLOAT*));
cudaMemcpy((sdata->pair.coeff1_gm.dev_data), coeff1, n, cudaMemcpyHostToDevice);
_coeff1_gm_tex.normalized = false; // access with normalized texture coordinates
_coeff1_gm_tex.filterMode = cudaFilterModePoint; // Point mode, so no
_coeff1_gm_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates
const textureReference* coeff1_gm_texture_ptr = &MY_AP(coeff1_gm_tex);
CUT_CHECK_ERROR("Cuda_Pair: init Coeff0 a failed");
#if F_PRECISION == 1
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<float>();
CUT_CHECK_ERROR("Cuda_Pair: init Coeff0 b failed");
cudaBindTexture(0, coeff1_gm_texture_ptr, sdata->pair.coeff1_gm.dev_data, &channelDescXType, sdata->atom.nmax * sizeof(F_FLOAT));
CUT_CHECK_ERROR("Cuda_Pair: init Coeff0 c failed");
#else
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<int2>();
CUT_CHECK_ERROR("Cuda_Pair: init Coeff0 b-d failed");
cudaBindTexture(0, coeff1_gm_texture_ptr, sdata->pair.coeff1_gm.dev_data, &channelDescXType, sdata->atom.nmax * 2 * sizeof(int2));
CUT_CHECK_ERROR("Cuda_Pair: init Coeff0 c-d failed");
#endif
} else
cudaMemcpyToSymbol(MY_AP(coeff1), coeff1 , n);
}
CUT_CHECK_ERROR("Cuda_Pair: init Coeff0 failed");
if(ncoeff > 1) {
F_FLOAT coeff2[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
coeff2[i * cuda_ntypes + j] = (F_FLOAT) sdata->pair.coeff2[i][j];
}
}
if(use_global_params) {
cudaMemcpyToSymbol(MY_AP(coeff2_gm) , &sdata->pair.coeff2_gm.dev_data , sizeof(F_FLOAT*));
cudaMemcpy(sdata->pair.coeff2_gm.dev_data, coeff2, n, cudaMemcpyHostToDevice);
_coeff2_gm_tex.normalized = false; // access with normalized texture coordinates
_coeff2_gm_tex.filterMode = cudaFilterModePoint; // Point mode, so no
_coeff2_gm_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates
const textureReference* coeff2_gm_texture_ptr = &MY_AP(coeff2_gm_tex);
#if F_PRECISION == 1
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<float>();
cudaBindTexture(0, coeff2_gm_texture_ptr, sdata->pair.coeff2_gm.dev_data, &channelDescXType, sdata->atom.nmax * sizeof(F_FLOAT));
#else
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<int2>();
cudaBindTexture(0, coeff2_gm_texture_ptr, sdata->pair.coeff2_gm.dev_data, &channelDescXType, sdata->atom.nmax * 2 * sizeof(int2));
#endif
} else
cudaMemcpyToSymbol(MY_AP(coeff2), coeff2 , n);
}
CUT_CHECK_ERROR("Cuda_Pair: init Coeff1 failed");
if(ncoeff > 2) {
F_FLOAT coeff3[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
coeff3[i * cuda_ntypes + j] = (F_FLOAT) sdata->pair.coeff3[i][j];
}
}
if(use_global_params) {
cudaMemcpyToSymbol(MY_AP(coeff3_gm) , &sdata->pair.coeff3_gm.dev_data , sizeof(F_FLOAT*));
cudaMemcpy(sdata->pair.coeff3_gm.dev_data, coeff3, n, cudaMemcpyHostToDevice);
_coeff3_gm_tex.normalized = false; // access with normalized texture coordinates
_coeff3_gm_tex.filterMode = cudaFilterModePoint; // Point mode, so no
_coeff3_gm_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates
const textureReference* coeff3_gm_texture_ptr = &MY_AP(coeff3_gm_tex);
#if F_PRECISION == 1
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<float>();
cudaBindTexture(0, coeff3_gm_texture_ptr, sdata->pair.coeff3_gm.dev_data, &channelDescXType, sdata->atom.nmax * sizeof(F_FLOAT));
#else
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<int2>();
cudaBindTexture(0, coeff3_gm_texture_ptr, sdata->pair.coeff3_gm.dev_data, &channelDescXType, sdata->atom.nmax * 2 * sizeof(int2));
#endif
} else
cudaMemcpyToSymbol(MY_AP(coeff3), coeff3 , n);
}
CUT_CHECK_ERROR("Cuda_Pair: init Coeff3 failed");
if(ncoeff > 3) {
F_FLOAT coeff4[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
coeff4[i * cuda_ntypes + j] = (F_FLOAT) sdata->pair.coeff4[i][j];
}
}
if(use_global_params) {
cudaMemcpyToSymbol(MY_AP(coeff4_gm) , &sdata->pair.coeff4_gm.dev_data , sizeof(F_FLOAT*));
cudaMemcpy(sdata->pair.coeff4_gm.dev_data, coeff4, n, cudaMemcpyHostToDevice);
_coeff4_gm_tex.normalized = false; // access with normalized texture coordinates
_coeff4_gm_tex.filterMode = cudaFilterModePoint; // Point mode, so no
_coeff4_gm_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates
const textureReference* coeff4_gm_texture_ptr = &MY_AP(coeff4_gm_tex);
#if F_PRECISION == 1
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<float>();
cudaBindTexture(0, coeff4_gm_texture_ptr, sdata->pair.coeff4_gm.dev_data, &channelDescXType, sdata->atom.nmax * sizeof(F_FLOAT));
#else
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<int2>();
cudaBindTexture(0, coeff4_gm_texture_ptr, sdata->pair.coeff4_gm.dev_data, &channelDescXType, sdata->atom.nmax * 2 * sizeof(int2));
#endif
} else
cudaMemcpyToSymbol(MY_AP(coeff4), coeff4 , n);
}
CUT_CHECK_ERROR("Cuda_Pair: init Coeff4 failed");
if(ncoeff > 4) {
F_FLOAT coeff5[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
coeff5[i * cuda_ntypes + j] = (F_FLOAT) sdata->pair.coeff5[i][j];
}
}
if(use_global_params) {
cudaMemcpyToSymbol(MY_AP(coeff5_gm) , &sdata->pair.coeff5_gm.dev_data , sizeof(F_FLOAT*));
cudaMemcpy(sdata->pair.coeff5_gm.dev_data, coeff5, n, cudaMemcpyHostToDevice);
_coeff5_gm_tex.normalized = false; // access with normalized texture coordinates
_coeff5_gm_tex.filterMode = cudaFilterModePoint; // Point mode, so no
_coeff5_gm_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates
const textureReference* coeff5_gm_texture_ptr = &MY_AP(coeff5_gm_tex);
#if F_PRECISION == 1
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<float>();
cudaBindTexture(0, coeff5_gm_texture_ptr, sdata->pair.coeff5_gm.dev_data, &channelDescXType, sdata->atom.nmax * sizeof(F_FLOAT));
#else
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<int2>();
cudaBindTexture(0, coeff5_gm_texture_ptr, sdata->pair.coeff5_gm.dev_data, &channelDescXType, sdata->atom.nmax * 2 * sizeof(int2));
#endif
} else
cudaMemcpyToSymbol(MY_AP(coeff5), coeff5 , n);
}
CUT_CHECK_ERROR("Cuda_Pair: init Coeff5 failed");
if(ncoeff > 5) {
F_FLOAT coeff6[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
coeff6[i * cuda_ntypes + j] = (F_FLOAT) sdata->pair.coeff6[i][j];
}
}
if(use_global_params) {
cudaMemcpyToSymbol(MY_AP(coeff6_gm) , &sdata->pair.coeff6_gm.dev_data , sizeof(F_FLOAT*));
cudaMemcpy(sdata->pair.coeff6_gm.dev_data, coeff6, n, cudaMemcpyHostToDevice);
_coeff6_gm_tex.normalized = false; // access with normalized texture coordinates
_coeff6_gm_tex.filterMode = cudaFilterModePoint; // Point mode, so no
_coeff6_gm_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates
const textureReference* coeff6_gm_texture_ptr = &MY_AP(coeff6_gm_tex);
#if F_PRECISION == 1
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<float>();
cudaBindTexture(0, coeff6_gm_texture_ptr, sdata->pair.coeff6_gm.dev_data, &channelDescXType, sdata->atom.nmax * sizeof(F_FLOAT));
#else
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<int2>();
cudaBindTexture(0, coeff6_gm_texture_ptr, sdata->pair.coeff6_gm.dev_data, &channelDescXType, sdata->atom.nmax * 2 * sizeof(int2));
#endif
}
}
CUT_CHECK_ERROR("Cuda_Pair: init Coeff6 failed");
if(ncoeff > 6) {
F_FLOAT coeff7[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
coeff7[i * cuda_ntypes + j] = (F_FLOAT) sdata->pair.coeff7[i][j];
}
}
if(use_global_params) {
cudaMemcpyToSymbol(MY_AP(coeff7_gm) , &sdata->pair.coeff7_gm.dev_data , sizeof(F_FLOAT*));
cudaMemcpy(sdata->pair.coeff7_gm.dev_data, coeff7, n, cudaMemcpyHostToDevice);
_coeff7_gm_tex.normalized = false; // access with normalized texture coordinates
_coeff7_gm_tex.filterMode = cudaFilterModePoint; // Point mode, so no
_coeff7_gm_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates
const textureReference* coeff7_gm_texture_ptr = &MY_AP(coeff7_gm_tex);
#if F_PRECISION == 1
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<float>();
cudaBindTexture(0, coeff7_gm_texture_ptr, sdata->pair.coeff7_gm.dev_data, &channelDescXType, sdata->atom.nmax * sizeof(F_FLOAT));
#else
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<int2>();
cudaBindTexture(0, coeff7_gm_texture_ptr, sdata->pair.coeff7_gm.dev_data, &channelDescXType, sdata->atom.nmax * 2 * sizeof(int2));
#endif
}
}
CUT_CHECK_ERROR("Cuda_Pair: init Coeff7 failed");
if(ncoeff > 7) {
F_FLOAT coeff8[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
coeff8[i * cuda_ntypes + j] = (F_FLOAT) sdata->pair.coeff8[i][j];
}
}
if(use_global_params) {
cudaMemcpyToSymbol(MY_AP(coeff8_gm) , &sdata->pair.coeff8_gm.dev_data , sizeof(F_FLOAT*));
cudaMemcpy(sdata->pair.coeff8_gm.dev_data, coeff8, n, cudaMemcpyHostToDevice);
_coeff8_gm_tex.normalized = false; // access with normalized texture coordinates
_coeff8_gm_tex.filterMode = cudaFilterModePoint; // Point mode, so no
_coeff8_gm_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates
const textureReference* coeff8_gm_texture_ptr = &MY_AP(coeff8_gm_tex);
#if F_PRECISION == 1
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<float>();
cudaBindTexture(0, coeff8_gm_texture_ptr, sdata->pair.coeff8_gm.dev_data, &channelDescXType, sdata->atom.nmax * sizeof(F_FLOAT));
#else
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<int2>();
cudaBindTexture(0, coeff8_gm_texture_ptr, sdata->pair.coeff8_gm.dev_data, &channelDescXType, sdata->atom.nmax * 2 * sizeof(int2));
#endif
}
}
CUT_CHECK_ERROR("Cuda_Pair: init Coeff8 failed");
if(ncoeff > 8) {
F_FLOAT coeff9[cuda_ntypes2];
for(int i = 1; i <= sdata->atom.ntypes; ++i) {
for(int j = 1; j <= sdata->atom.ntypes; ++j) {
coeff9[i * cuda_ntypes + j] = (F_FLOAT) sdata->pair.coeff9[i][j];
}
}
if(use_global_params) {
cudaMemcpyToSymbol(MY_AP(coeff9_gm) , &sdata->pair.coeff9_gm.dev_data , sizeof(F_FLOAT*));
cudaMemcpy(sdata->pair.coeff9_gm.dev_data, coeff9, n, cudaMemcpyHostToDevice);
_coeff9_gm_tex.normalized = false; // access with normalized texture coordinates
_coeff9_gm_tex.filterMode = cudaFilterModePoint; // Point mode, so no
_coeff9_gm_tex.addressMode[0] = cudaAddressModeWrap; // wrap texture coordinates
const textureReference* coeff9_gm_texture_ptr = &MY_AP(coeff9_gm_tex);
#if F_PRECISION == 1
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<float>();
cudaBindTexture(0, coeff9_gm_texture_ptr, sdata->pair.coeff9_gm.dev_data, &channelDescXType, sdata->atom.nmax * sizeof(F_FLOAT));
#else
cudaChannelFormatDesc channelDescXType = cudaCreateChannelDesc<int2>();
cudaBindTexture(0, coeff9_gm_texture_ptr, sdata->pair.coeff9_gm.dev_data, &channelDescXType, sdata->atom.nmax * 2 * sizeof(int2));
#endif
}
}
CUT_CHECK_ERROR("Cuda_Pair: init Coeff9 failed");
F_FLOAT special_lj[4];
special_lj[0] = sdata->pair.special_lj[0];
special_lj[1] = sdata->pair.special_lj[1];
special_lj[2] = sdata->pair.special_lj[2];
special_lj[3] = sdata->pair.special_lj[3];
X_FLOAT box_size[3] = {
sdata->domain.subhi[0] - sdata->domain.sublo[0],
sdata->domain.subhi[1] - sdata->domain.sublo[1],
sdata->domain.subhi[2] - sdata->domain.sublo[2]
};
cudaMemcpyToSymbol(MY_AP(box_size) , box_size , sizeof(X_FLOAT) * 3);
cudaMemcpyToSymbol(MY_AP(cuda_ntypes) , &cuda_ntypes , sizeof(unsigned));
cudaMemcpyToSymbol(MY_AP(special_lj) , special_lj , sizeof(F_FLOAT) * 4);
cudaMemcpyToSymbol(MY_AP(virial) , &sdata->pair.virial.dev_data , sizeof(ENERGY_FLOAT*));
cudaMemcpyToSymbol(MY_AP(eng_vdwl) , &sdata->pair.eng_vdwl.dev_data , sizeof(ENERGY_FLOAT*));
cudaMemcpyToSymbol(MY_AP(periodicity) , sdata->domain.periodicity , sizeof(int) * 3);
cudaMemcpyToSymbol(MY_AP(collect_forces_later), &sdata->pair.collect_forces_later , sizeof(int));
if(need_q) {
F_FLOAT qqrd2e_tmp = sdata->pppm.qqrd2e;
F_FLOAT special_coul[4];
special_coul[0] = sdata->pair.special_coul[0];
special_coul[1] = sdata->pair.special_coul[1];
special_coul[2] = sdata->pair.special_coul[2];
special_coul[3] = sdata->pair.special_coul[3];
cudaMemcpyToSymbol(MY_AP(special_coul) , special_coul , sizeof(F_FLOAT) * 4);
cudaMemcpyToSymbol(MY_AP(g_ewald) , &sdata->pair.g_ewald , sizeof(F_FLOAT));
cudaMemcpyToSymbol(MY_AP(qqrd2e) , &qqrd2e_tmp , sizeof(F_FLOAT));
cudaMemcpyToSymbol(MY_AP(kappa) , &sdata->pair.kappa , sizeof(F_FLOAT));
cudaMemcpyToSymbol(MY_AP(eng_coul) , &sdata->pair.eng_coul.dev_data , sizeof(ENERGY_FLOAT*));
}
CUT_CHECK_ERROR("Cuda_Pair: init failed");
}
timespec startpairtime, endpairtime;
//Function which is called prior to kernel invocation, determins grid, Binds Textures, updates constant memory if necessary
void Cuda_Pair_PreKernel_AllStyles(cuda_shared_data* sdata, cuda_shared_neighlist* sneighlist, int eflag, int vflag, dim3 &grid, dim3 &threads, int &sharedperproc, bool need_q = false, int maxthreads = 256)
{
if(sdata->atom.nlocal == 0) return;
if(sdata->atom.update_neigh)
Cuda_Pair_UpdateNeighbor_AllStyles(sdata, sneighlist);
if(sdata->atom.update_nmax)
Cuda_Pair_UpdateNmax_AllStyles(sdata, sneighlist);
if(sdata->atom.update_nlocal) {
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
}
BindXTypeTexture(sdata);
if(need_q) BindQTexture(sdata);
sharedperproc = 0;
if(sdata->pair.use_block_per_atom) sharedperproc += 3;
if(eflag) sharedperproc += 1;
if(need_q && eflag) sharedperproc += 1;
if(vflag) sharedperproc += 6;
int threadnum = sneighlist->inum;
if(sdata->comm.comm_phase == 2)threadnum = sneighlist->inum_border2;
if(sdata->pair.use_block_per_atom) {
threadnum *= 64;
maxthreads = 64;
}
int3 layout = getgrid(threadnum, sharedperproc * sizeof(ENERGY_FLOAT), maxthreads, true); //need to limit to 192 threads due to register limit
threads.x = layout.z;
threads.y = 1;
threads.z = 1;
grid.x = layout.x;
grid.y = layout.y;
grid.z = 1;
int size = (unsigned)(layout.y * layout.x) * sharedperproc * sizeof(ENERGY_FLOAT);
if(sdata->pair.collect_forces_later) size += (unsigned)(sdata->atom.nmax * 3 * sizeof(F_FLOAT));
Cuda_UpdateBuffer(sdata, size);
if(sdata->pair.use_block_per_atom)
cudaMemset(sdata->buffer, 0, size);
sdata->pair.lastgridsize = grid.x * grid.y;
sdata->pair.n_energy_virial = sharedperproc;
if(sdata->pair.use_block_per_atom) sdata->pair.n_energy_virial -= 3;
clock_gettime(CLOCK_REALTIME, &startpairtime);
MYDBG(printf("# CUDA: Cuda_Pair: kernel start eflag: %i vflag: %i config: %i %i %i %i\n", eflag, vflag, grid.x, grid.y, threads.x, sharedperproc * sizeof(ENERGY_FLOAT)*threads.x);)
}
//Function which is called after the kernel invocation, collects energy and virial
void Cuda_Pair_PostKernel_AllStyles(cuda_shared_data* sdata, dim3 &grid, int &sharedperproc, int eflag, int vflag)
{
if((not sdata->pair.collect_forces_later) && (eflag || vflag)) { //not sdata->comm.comm_phase==2))
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &endpairtime);
sdata->cuda_timings.pair_kernel +=
endpairtime.tv_sec - startpairtime.tv_sec + 1.0 * (endpairtime.tv_nsec - startpairtime.tv_nsec) / 1000000000;
CUT_CHECK_ERROR("Cuda_Pair: Kernel execution failed");
if(eflag || vflag) {
int n = grid.x * grid.y;
if(sdata->pair.use_block_per_atom)
grid.x = sharedperproc - 3;
else
grid.x = sharedperproc;
grid.y = 1;
dim3 threads(128, 1, 1);
MYDBG(printf("# CUDA: Cuda_Pair: virial compute kernel start eflag: %i vflag: %i config: %i %i %i %i\n", eflag, vflag, grid.x, grid.y, threads.x, sharedperproc * sizeof(ENERGY_FLOAT)*threads.x);)
MY_AP(PairVirialCompute_reduce) <<< grid, threads, threads.x* sizeof(ENERGY_FLOAT)>>>(n);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_Pair: virial compute Kernel execution failed");
}
MYDBG(printf("# CUDA: Cuda_Pair: kernel done\n");)
}
}
#include "pair_born_coul_long_cuda.cu"
#include "pair_buck_coul_cut_cuda.cu"
#include "pair_buck_coul_long_cuda.cu"
#include "pair_buck_cuda.cu"
#include "pair_lj_sdk_cuda.cu"
#include "pair_lj_sdk_coul_cut_cuda.cu"
#include "pair_lj_sdk_coul_debye_cuda.cu"
#include "pair_lj_sdk_coul_long_cuda.cu"
#include "pair_gran_hooke_cuda.cu"
#include "pair_lj_charmm_coul_charmm_implicit_cuda.cu"
#include "pair_lj_charmm_coul_charmm_cuda.cu"
#include "pair_lj_charmm_coul_long_cuda.cu"
#include "pair_lj_class2_coul_cut_cuda.cu"
#include "pair_lj_class2_coul_long_cuda.cu"
#include "pair_lj_class2_cuda.cu"
#include "pair_lj_cut_coul_cut_cuda.cu"
#include "pair_lj_cut_coul_debye_cuda.cu"
#include "pair_lj_cut_coul_long_cuda.cu"
#include "pair_lj_cut_cuda.cu"
#include "pair_lj_cut_experimental_cuda.cu"
#include "pair_lj_expand_cuda.cu"
#include "pair_lj_gromacs_cuda.cu"
#include "pair_lj_gromacs_coul_gromacs_cuda.cu"
#include "pair_lj_smooth_cuda.cu"
#include "pair_lj96_cut_cuda.cu"
#include "pair_morse_coul_long_cuda.cu"
#include "pair_morse_cuda.cu"
#include "pair_eam_cuda.cu"
#include "cuda_pair_kernel.cu"
#include "pair_manybody_const.h"
#include "pair_tersoff_cuda.cu"
#include "pair_sw_cuda.cu"
void Cuda_Pair_UpdateNmax(cuda_shared_data* sdata)
{
CUT_CHECK_ERROR("Cuda_Pair: before updateNmax failed");
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nmax) , & sdata->atom.nmax , sizeof(int));
cudaMemcpyToSymbol(MY_AP(type) , & sdata->atom.type .dev_data, sizeof(int*));
cudaMemcpyToSymbol(MY_AP(x) , & sdata->atom.x .dev_data, sizeof(X_FLOAT*));
cudaMemcpyToSymbol(MY_AP(x_type) , & sdata->atom.x_type .dev_data, sizeof(X_FLOAT4*));
cudaMemcpyToSymbol(MY_AP(xhold) , & sdata->atom.xhold .dev_data, sizeof(X_FLOAT*));
cudaMemcpyToSymbol(MY_AP(v) , & sdata->atom.v .dev_data, sizeof(V_FLOAT*));
cudaMemcpyToSymbol(MY_AP(radius) , & sdata->atom.radius .dev_data, sizeof(X_FLOAT*));
cudaMemcpyToSymbol(MY_AP(v_radius) , & sdata->atom.v_radius .dev_data, sizeof(V_FLOAT4*));
cudaMemcpyToSymbol(MY_AP(omega) , & sdata->atom.omega .dev_data, sizeof(V_FLOAT*));
cudaMemcpyToSymbol(MY_AP(rmass) , & sdata->atom.rmass .dev_data, sizeof(V_FLOAT*));
cudaMemcpyToSymbol(MY_AP(omega_rmass), & sdata->atom.omega_rmass.dev_data, sizeof(V_FLOAT4*));
cudaMemcpyToSymbol(MY_AP(map_array), & sdata->atom.map_array .dev_data, sizeof(int*));
CUT_CHECK_ERROR("Cuda_Pair: updateNmax failed");
}
void Cuda_Pair_GenerateXType(cuda_shared_data* sdata)
{
MYDBG(printf(" # CUDA: GenerateXType ... start %i %i %i %p %p %p %p\n", sdata->atom.nlocal, sdata->atom.nall, sdata->atom.nmax, sdata->atom.x.dev_data, sdata->atom.x_type.dev_data, sdata->atom.xhold.dev_data, sdata->atom.type.dev_data);)
if(sdata->atom.update_nmax)
Cuda_Pair_UpdateNmax(sdata);
if(sdata->atom.update_nlocal) {
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
}
MYDBG(printf(" # CUDA: GenerateXType ... getgrid\n"); fflush(stdout);)
int3 layout = getgrid(sdata->atom.nall);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
MYDBG(printf(" # CUDA: GenerateXType ... kernel start test\n"); fflush(stdout);)
Pair_GenerateXType_Kernel <<< grid, threads, 0>>>();
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_Pair GenerateXType: Kernel failed");
MYDBG(printf(" # CUDA: GenerateXType ... end\n"); fflush(stdout);)
}
void Cuda_Pair_RevertXType(cuda_shared_data* sdata)
{
MYDBG(printf(" # CUDA: RevertXType ... start\n");)
if(sdata->atom.update_nmax)
Cuda_Pair_UpdateNmax(sdata);
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
int3 layout = getgrid(sdata->atom.nall);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
Pair_RevertXType_Kernel <<< grid, threads, 0>>>();
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_Pair GenerateXType: Kernel failed");
MYDBG(printf(" # CUDA: RevertXType ... end\n");)
}
void Cuda_Pair_GenerateVRadius(cuda_shared_data* sdata)
{
MYDBG(printf(" # CUDA: GenerateVRadius ... start %i %i %i %p %p %p %p\n", sdata->atom.nlocal, sdata->atom.nall, sdata->atom.nmax, sdata->atom.x.dev_data, sdata->atom.x_type.dev_data, sdata->atom.xhold.dev_data, sdata->atom.type.dev_data);)
if(sdata->atom.update_nmax)
Cuda_Pair_UpdateNmax(sdata);
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
MYDBG(printf(" # CUDA: GenerateVRadius ... getgrid\n"); fflush(stdout);)
int3 layout = getgrid(sdata->atom.nall);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
MYDBG(printf(" # CUDA: GenerateVRadius ... kernel start test\n"); fflush(stdout);)
Pair_GenerateVRadius_Kernel <<< grid, threads, 0>>>();
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_Pair GenerateVRadius: Kernel failed");
MYDBG(printf(" # CUDA: GenerateVRadius ... end\n"); fflush(stdout);)
}
void Cuda_Pair_GenerateOmegaRmass(cuda_shared_data* sdata)
{
MYDBG(printf(" # CUDA: GenerateOmegaRmass ... start %i %i %i %p %p %p %p\n", sdata->atom.nlocal, sdata->atom.nall, sdata->atom.nmax, sdata->atom.x.dev_data, sdata->atom.x_type.dev_data, sdata->atom.xhold.dev_data, sdata->atom.type.dev_data);)
if(sdata->atom.update_nmax)
Cuda_Pair_UpdateNmax(sdata);
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
MYDBG(printf(" # CUDA: GenerateOmegaRmass ... getgrid\n"); fflush(stdout);)
int3 layout = getgrid(sdata->atom.nall);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
MYDBG(printf(" # CUDA: GenerateOmegaRmass ... kernel start test\n"); fflush(stdout);)
Pair_GenerateOmegaRmass_Kernel <<< grid, threads, 0>>>();
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_Pair GenerateOmegaRmass: Kernel failed");
MYDBG(printf(" # CUDA: GenerateOmegaRmass ... end\n"); fflush(stdout);)
}
void Cuda_Pair_BuildXHold(cuda_shared_data* sdata)
{
if(sdata->atom.update_nmax)
Cuda_Pair_UpdateNmax(sdata);
cudaMemcpyToSymbol(MY_AP(nlocal) , & sdata->atom.nlocal , sizeof(int));
cudaMemcpyToSymbol(MY_AP(nall) , & sdata->atom.nall , sizeof(int));
int3 layout = getgrid(sdata->atom.nall);
dim3 threads(layout.z, 1, 1);
dim3 grid(layout.x, layout.y, 1);
Pair_BuildXHold_Kernel <<< grid, threads, 0>>>();
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_Pair GenerateXType: Kernel failed");
}
void Cuda_Pair_CollectForces(cuda_shared_data* sdata, int eflag, int vflag)
{
cudaThreadSynchronize();
clock_gettime(CLOCK_REALTIME, &endpairtime);
sdata->cuda_timings.pair_kernel +=
endpairtime.tv_sec - startpairtime.tv_sec + 1.0 * (endpairtime.tv_nsec - startpairtime.tv_nsec) / 1000000000;
CUT_CHECK_ERROR("Cuda_Pair: Kernel execution failed");
dim3 threads;
dim3 grid;
if(eflag || vflag) {
int n = sdata->pair.lastgridsize;
grid.x = sdata->pair.n_energy_virial;
grid.y = 1;
threads.x = 128;
//printf("A grid.x: %i\n",grid.x);
MY_AP(PairVirialCompute_reduce) <<< grid, threads, threads.x* sizeof(ENERGY_FLOAT)>>>(n);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_Pair_CollectForces: virial compute Kernel execution failed");
}
int3 layout = getgrid(sdata->atom.nlocal);
threads.x = layout.z;
grid.x = layout.x;
grid.y = layout.y;
Pair_CollectForces_Kernel <<< grid, threads, 0>>>(sdata->pair.n_energy_virial, sdata->pair.lastgridsize);
cudaThreadSynchronize();
CUT_CHECK_ERROR("Cuda_Pair_CollectForces: Force Summation Kernel execution failed");
}

Event Timeline