Page MenuHomec4science

lal_born_coul_wolf.cpp
No OneTemporary

File Metadata

Created
Mon, Nov 4, 02:24

lal_born_coul_wolf.cpp

/***************************************************************************
born_coul_wolf.cpp
-------------------
Trung Dac Nguyen (ORNL)
Class for acceleration of the born/coul/wolf pair style.
__________________________________________________________________________
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
__________________________________________________________________________
begin :
email : nguyentd@ornl.gov
***************************************************************************/
#ifdef USE_OPENCL
#include "born_coul_wolf_cl.h"
#elif defined(USE_CUDART)
const char *born_coul_wolf=0;
#else
#include "born_coul_wolf_cubin.h"
#endif
#include "lal_born_coul_wolf.h"
#include <cassert>
using namespace LAMMPS_AL;
#define BornCoulWolfT BornCoulWolf<numtyp, acctyp>
extern Device<PRECISION,ACC_PRECISION> device;
template <class numtyp, class acctyp>
BornCoulWolfT::BornCoulWolf() : BaseCharge<numtyp,acctyp>(),
_allocated(false) {
}
template <class numtyp, class acctyp>
BornCoulWolfT::~BornCoulWolfT() {
clear();
}
template <class numtyp, class acctyp>
int BornCoulWolfT::bytes_per_atom(const int max_nbors) const {
return this->bytes_per_atom_atomic(max_nbors);
}
template <class numtyp, class acctyp>
int BornCoulWolfT::init(const int ntypes, double **host_cutsq, double **host_rhoinv,
double **host_born1, double **host_born2, double **host_born3,
double **host_a, double **host_c, double **host_d,
double **host_sigma, double **host_offset,
double *host_special_lj, const int nlocal,
const int nall, const int max_nbors,
const int maxspecial, const double cell_size,
const double gpu_split, FILE *_screen,
double **host_cut_ljsq, const double host_cut_coulsq,
double *host_special_coul, const double qqrd2e,
const double alf, const double e_shift, const double f_shift) {
int success;
success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size,gpu_split,
_screen,born_coul_wolf,"k_born_wolf");
if (success!=0)
return success;
// If atom type constants fit in shared memory use fast kernel
int lj_types=ntypes;
shared_types=false;
int max_shared_types=this->device->max_shared_types();
if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
lj_types=max_shared_types;
shared_types=true;
}
_lj_types=lj_types;
// Allocate a host write buffer for data initialization
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
UCL_WRITE_ONLY);
for (int i=0; i<lj_types*lj_types; i++)
host_write[i]=0.0;
coeff1.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,coeff1,host_write,host_rhoinv,
host_born1,host_born2,host_born3);
coeff2.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,coeff2,host_write,host_a,host_c,
host_d,host_offset);
cutsq_sigma.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
this->atom->type_pack4(ntypes,lj_types,cutsq_sigma,host_write,host_cutsq,
host_cut_ljsq,host_sigma);
sp_lj.alloc(8,*(this->ucl_device),UCL_READ_ONLY);
for (int i=0; i<4; i++) {
host_write[i]=host_special_lj[i];
host_write[i+4]=host_special_coul[i];
}
ucl_copy(sp_lj,host_write,8,false);
_cut_coulsq=host_cut_coulsq;
_qqrd2e=qqrd2e;
_alf=alf;
_e_shift=e_shift;
_f_shift=f_shift;
_allocated=true;
this->_max_bytes=coeff1.row_bytes()+coeff2.row_bytes()
+cutsq_sigma.row_bytes()+sp_lj.row_bytes();
return 0;
}
template <class numtyp, class acctyp>
void BornCoulWolfT::clear() {
if (!_allocated)
return;
_allocated=false;
coeff1.clear();
coeff2.clear();
cutsq_sigma.clear();
sp_lj.clear();
this->clear_atomic();
}
template <class numtyp, class acctyp>
double BornCoulWolfT::host_memory_usage() const {
return this->host_memory_usage_atomic()+sizeof(BornCoulWolf<numtyp,acctyp>);
}
// ---------------------------------------------------------------------------
// Calculate energies, forces, and torques
// ---------------------------------------------------------------------------
template <class numtyp, class acctyp>
void BornCoulWolfT::loop(const bool _eflag, const bool _vflag) {
// Compute the block size and grid size to keep all cores busy
const int BX=this->block_size();
int eflag, vflag;
if (_eflag)
eflag=1;
else
eflag=0;
if (_vflag)
vflag=1;
else
vflag=0;
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
(BX/this->_threads_per_atom)));
int ainum=this->ans->inum();
int nbor_pitch=this->nbor->nbor_pitch();
this->time_pair.start();
if (shared_types) {
this->k_pair_fast.set_size(GX,BX);
this->k_pair_fast.run(&this->atom->x, &coeff1, &coeff2, &sp_lj,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->ans->force, &this->ans->engv, &eflag, &vflag,
&ainum, &nbor_pitch, &this->atom->q,
&cutsq_sigma, &_cut_coulsq, &_qqrd2e,
&_alf, &_e_shift, &_f_shift,
&this->_threads_per_atom);
} else {
this->k_pair.set_size(GX,BX);
this->k_pair.run(&this->atom->x, &coeff1, &coeff2, &_lj_types, &sp_lj,
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
&this->ans->force, &this->ans->engv, &eflag, &vflag, &ainum,
&nbor_pitch, &this->atom->q,
&cutsq_sigma, &_cut_coulsq,
&_qqrd2e, &_alf, &_e_shift, &_f_shift,
&this->_threads_per_atom);
}
this->time_pair.stop();
}
template class BornCoulWolf<PRECISION,ACC_PRECISION>;

Event Timeline