Page MenuHomec4science

TestDynViewAPI.hpp
No OneTemporary

File Metadata

Created
Thu, Mar 6, 11:43

TestDynViewAPI.hpp

/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#include <gtest/gtest.h>
#include <Kokkos_Core.hpp>
#include <stdexcept>
#include <sstream>
#include <iostream>
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
namespace Test {
template< class T , class ... P >
size_t allocation_count( const Kokkos::Experimental::DynRankView<T,P...> & view )
{
const size_t card = view.size();
const size_t alloc = view.span();
return card <= alloc ? alloc : 0 ;
}
/*--------------------------------------------------------------------------*/
template< typename T, class DeviceType>
struct TestViewOperator
{
typedef DeviceType execution_space ;
static const unsigned N = 100 ;
static const unsigned D = 3 ;
typedef Kokkos::Experimental::DynRankView< T , execution_space > view_type ;
const view_type v1 ;
const view_type v2 ;
TestViewOperator()
: v1( "v1" , N , D )
, v2( "v2" , N , D )
{}
static void testit()
{
Kokkos::parallel_for( N , TestViewOperator() );
}
KOKKOS_INLINE_FUNCTION
void operator()( const unsigned i ) const
{
const unsigned X = 0 ;
const unsigned Y = 1 ;
const unsigned Z = 2 ;
v2(i,X) = v1(i,X);
v2(i,Y) = v1(i,Y);
v2(i,Z) = v1(i,Z);
}
};
/*--------------------------------------------------------------------------*/
template< class DataType ,
class DeviceType ,
unsigned Rank >
struct TestViewOperator_LeftAndRight ;
template< class DataType , class DeviceType >
struct TestViewOperator_LeftAndRight< DataType , DeviceType , 7 >
{
typedef DeviceType execution_space ;
typedef typename execution_space::memory_space memory_space ;
typedef typename execution_space::size_type size_type ;
typedef int value_type ;
KOKKOS_INLINE_FUNCTION
static void join( volatile value_type & update ,
const volatile value_type & input )
{ update |= input ; }
KOKKOS_INLINE_FUNCTION
static void init( value_type & update )
{ update = 0 ; }
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ;
left_view left ;
right_view right ;
long left_alloc ;
long right_alloc ;
TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4, unsigned N5, unsigned N6 )
: left( "left" , N0, N1, N2, N3, N4, N5, N6 )
, right( "right" , N0, N1, N2, N3, N4, N5, N6 )
, left_alloc( allocation_count( left ) )
, right_alloc( allocation_count( right ) )
{}
static void testit(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4, unsigned N5, unsigned N6 )
{
TestViewOperator_LeftAndRight driver(N0, N1, N2, N3, N4, N5, N6 );
int error_flag = 0 ;
Kokkos::parallel_reduce( 1 , driver , error_flag );
ASSERT_EQ( error_flag , 0 );
}
KOKKOS_INLINE_FUNCTION
void operator()( const size_type , value_type & update ) const
{
long offset ;
offset = -1 ;
for ( unsigned i6 = 0 ; i6 < unsigned(left.dimension_6()) ; ++i6 )
for ( unsigned i5 = 0 ; i5 < unsigned(left.dimension_5()) ; ++i5 )
for ( unsigned i4 = 0 ; i4 < unsigned(left.dimension_4()) ; ++i4 )
for ( unsigned i3 = 0 ; i3 < unsigned(left.dimension_3()) ; ++i3 )
for ( unsigned i2 = 0 ; i2 < unsigned(left.dimension_2()) ; ++i2 )
for ( unsigned i1 = 0 ; i1 < unsigned(left.dimension_1()) ; ++i1 )
for ( unsigned i0 = 0 ; i0 < unsigned(left.dimension_0()) ; ++i0 )
{
const long j = & left( i0, i1, i2, i3, i4, i5, i6 ) -
& left( 0, 0, 0, 0, 0, 0, 0 );
if ( j <= offset || left_alloc <= j ) { update |= 1 ; }
offset = j ;
}
offset = -1 ;
for ( unsigned i0 = 0 ; i0 < unsigned(right.dimension_0()) ; ++i0 )
for ( unsigned i1 = 0 ; i1 < unsigned(right.dimension_1()) ; ++i1 )
for ( unsigned i2 = 0 ; i2 < unsigned(right.dimension_2()) ; ++i2 )
for ( unsigned i3 = 0 ; i3 < unsigned(right.dimension_3()) ; ++i3 )
for ( unsigned i4 = 0 ; i4 < unsigned(right.dimension_4()) ; ++i4 )
for ( unsigned i5 = 0 ; i5 < unsigned(right.dimension_5()) ; ++i5 )
for ( unsigned i6 = 0 ; i6 < unsigned(right.dimension_6()) ; ++i6 )
{
const long j = & right( i0, i1, i2, i3, i4, i5, i6 ) -
& right( 0, 0, 0, 0, 0, 0, 0 );
if ( j <= offset || right_alloc <= j ) { update |= 2 ; }
offset = j ;
}
}
};
template< class DataType , class DeviceType >
struct TestViewOperator_LeftAndRight< DataType , DeviceType , 6 >
{
typedef DeviceType execution_space ;
typedef typename execution_space::memory_space memory_space ;
typedef typename execution_space::size_type size_type ;
typedef int value_type ;
KOKKOS_INLINE_FUNCTION
static void join( volatile value_type & update ,
const volatile value_type & input )
{ update |= input ; }
KOKKOS_INLINE_FUNCTION
static void init( value_type & update )
{ update = 0 ; }
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ;
left_view left ;
right_view right ;
long left_alloc ;
long right_alloc ;
TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4, unsigned N5 )
: left( "left" , N0, N1, N2, N3, N4, N5 )
, right( "right" , N0, N1, N2, N3, N4, N5 )
, left_alloc( allocation_count( left ) )
, right_alloc( allocation_count( right ) )
{}
static void testit(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4, unsigned N5)
{
TestViewOperator_LeftAndRight driver (N0, N1, N2, N3, N4, N5);
int error_flag = 0 ;
Kokkos::parallel_reduce( 1 , driver , error_flag );
ASSERT_EQ( error_flag , 0 );
}
KOKKOS_INLINE_FUNCTION
void operator()( const size_type , value_type & update ) const
{
long offset ;
offset = -1 ;
for ( unsigned i5 = 0 ; i5 < unsigned(left.dimension_5()) ; ++i5 )
for ( unsigned i4 = 0 ; i4 < unsigned(left.dimension_4()) ; ++i4 )
for ( unsigned i3 = 0 ; i3 < unsigned(left.dimension_3()) ; ++i3 )
for ( unsigned i2 = 0 ; i2 < unsigned(left.dimension_2()) ; ++i2 )
for ( unsigned i1 = 0 ; i1 < unsigned(left.dimension_1()) ; ++i1 )
for ( unsigned i0 = 0 ; i0 < unsigned(left.dimension_0()) ; ++i0 )
{
const long j = & left( i0, i1, i2, i3, i4, i5 ) -
& left( 0, 0, 0, 0, 0, 0 );
if ( j <= offset || left_alloc <= j ) { update |= 1 ; }
offset = j ;
}
offset = -1 ;
for ( unsigned i0 = 0 ; i0 < unsigned(right.dimension_0()) ; ++i0 )
for ( unsigned i1 = 0 ; i1 < unsigned(right.dimension_1()) ; ++i1 )
for ( unsigned i2 = 0 ; i2 < unsigned(right.dimension_2()) ; ++i2 )
for ( unsigned i3 = 0 ; i3 < unsigned(right.dimension_3()) ; ++i3 )
for ( unsigned i4 = 0 ; i4 < unsigned(right.dimension_4()) ; ++i4 )
for ( unsigned i5 = 0 ; i5 < unsigned(right.dimension_5()) ; ++i5 )
{
const long j = & right( i0, i1, i2, i3, i4, i5 ) -
& right( 0, 0, 0, 0, 0, 0 );
if ( j <= offset || right_alloc <= j ) { update |= 2 ; }
offset = j ;
}
}
};
template< class DataType , class DeviceType >
struct TestViewOperator_LeftAndRight< DataType , DeviceType , 5 >
{
typedef DeviceType execution_space ;
typedef typename execution_space::memory_space memory_space ;
typedef typename execution_space::size_type size_type ;
typedef int value_type ;
KOKKOS_INLINE_FUNCTION
static void join( volatile value_type & update ,
const volatile value_type & input )
{ update |= input ; }
KOKKOS_INLINE_FUNCTION
static void init( value_type & update )
{ update = 0 ; }
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutStride, execution_space > stride_view ;
left_view left ;
right_view right ;
stride_view left_stride ;
stride_view right_stride ;
long left_alloc ;
long right_alloc ;
TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4 )
: left( "left" , N0, N1, N2, N3, N4 )
, right( "right" , N0, N1, N2, N3, N4 )
, left_stride( left )
, right_stride( right )
, left_alloc( allocation_count( left ) )
, right_alloc( allocation_count( right ) )
{}
static void testit(unsigned N0, unsigned N1, unsigned N2, unsigned N3, unsigned N4)
{
TestViewOperator_LeftAndRight driver(N0, N1, N2, N3, N4);
int error_flag = 0 ;
Kokkos::parallel_reduce( 1 , driver , error_flag );
ASSERT_EQ( error_flag , 0 );
}
KOKKOS_INLINE_FUNCTION
void operator()( const size_type , value_type & update ) const
{
long offset ;
offset = -1 ;
for ( unsigned i4 = 0 ; i4 < unsigned(left.dimension_4()) ; ++i4 )
for ( unsigned i3 = 0 ; i3 < unsigned(left.dimension_3()) ; ++i3 )
for ( unsigned i2 = 0 ; i2 < unsigned(left.dimension_2()) ; ++i2 )
for ( unsigned i1 = 0 ; i1 < unsigned(left.dimension_1()) ; ++i1 )
for ( unsigned i0 = 0 ; i0 < unsigned(left.dimension_0()) ; ++i0 )
{
const long j = & left( i0, i1, i2, i3, i4 ) -
& left( 0, 0, 0, 0, 0 );
if ( j <= offset || left_alloc <= j ) { update |= 1 ; }
offset = j ;
if ( & left( i0, i1, i2, i3, i4 ) !=
& left_stride( i0, i1, i2, i3, i4 ) ) { update |= 4 ; }
}
offset = -1 ;
for ( unsigned i0 = 0 ; i0 < unsigned(right.dimension_0()) ; ++i0 )
for ( unsigned i1 = 0 ; i1 < unsigned(right.dimension_1()) ; ++i1 )
for ( unsigned i2 = 0 ; i2 < unsigned(right.dimension_2()) ; ++i2 )
for ( unsigned i3 = 0 ; i3 < unsigned(right.dimension_3()) ; ++i3 )
for ( unsigned i4 = 0 ; i4 < unsigned(right.dimension_4()) ; ++i4 )
{
const long j = & right( i0, i1, i2, i3, i4 ) -
& right( 0, 0, 0, 0, 0 );
if ( j <= offset || right_alloc <= j ) { update |= 2 ; }
offset = j ;
if ( & right( i0, i1, i2, i3, i4 ) !=
& right_stride( i0, i1, i2, i3, i4 ) ) { update |= 8 ; }
}
}
};
template< class DataType , class DeviceType >
struct TestViewOperator_LeftAndRight< DataType , DeviceType , 4 >
{
typedef DeviceType execution_space ;
typedef typename execution_space::memory_space memory_space ;
typedef typename execution_space::size_type size_type ;
typedef int value_type ;
KOKKOS_INLINE_FUNCTION
static void join( volatile value_type & update ,
const volatile value_type & input )
{ update |= input ; }
KOKKOS_INLINE_FUNCTION
static void init( value_type & update )
{ update = 0 ; }
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ;
left_view left ;
right_view right ;
long left_alloc ;
long right_alloc ;
TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2, unsigned N3)
: left( "left" , N0, N1, N2, N3 )
, right( "right" , N0, N1, N2, N3 )
, left_alloc( allocation_count( left ) )
, right_alloc( allocation_count( right ) )
{}
static void testit(unsigned N0, unsigned N1, unsigned N2, unsigned N3)
{
TestViewOperator_LeftAndRight driver (N0, N1, N2, N3);
int error_flag = 0 ;
Kokkos::parallel_reduce( 1 , driver , error_flag );
ASSERT_EQ( error_flag , 0 );
}
KOKKOS_INLINE_FUNCTION
void operator()( const size_type , value_type & update ) const
{
long offset ;
offset = -1 ;
for ( unsigned i3 = 0 ; i3 < unsigned(left.dimension_3()) ; ++i3 )
for ( unsigned i2 = 0 ; i2 < unsigned(left.dimension_2()) ; ++i2 )
for ( unsigned i1 = 0 ; i1 < unsigned(left.dimension_1()) ; ++i1 )
for ( unsigned i0 = 0 ; i0 < unsigned(left.dimension_0()) ; ++i0 )
{
const long j = & left( i0, i1, i2, i3 ) -
& left( 0, 0, 0, 0 );
if ( j <= offset || left_alloc <= j ) { update |= 1 ; }
offset = j ;
}
offset = -1 ;
for ( unsigned i0 = 0 ; i0 < unsigned(right.dimension_0()) ; ++i0 )
for ( unsigned i1 = 0 ; i1 < unsigned(right.dimension_1()) ; ++i1 )
for ( unsigned i2 = 0 ; i2 < unsigned(right.dimension_2()) ; ++i2 )
for ( unsigned i3 = 0 ; i3 < unsigned(right.dimension_3()) ; ++i3 )
{
const long j = & right( i0, i1, i2, i3 ) -
& right( 0, 0, 0, 0 );
if ( j <= offset || right_alloc <= j ) { update |= 2 ; }
offset = j ;
}
}
};
template< class DataType , class DeviceType >
struct TestViewOperator_LeftAndRight< DataType , DeviceType , 3 >
{
typedef DeviceType execution_space ;
typedef typename execution_space::memory_space memory_space ;
typedef typename execution_space::size_type size_type ;
typedef int value_type ;
KOKKOS_INLINE_FUNCTION
static void join( volatile value_type & update ,
const volatile value_type & input )
{ update |= input ; }
KOKKOS_INLINE_FUNCTION
static void init( value_type & update )
{ update = 0 ; }
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutStride, execution_space > stride_view ;
left_view left ;
right_view right ;
stride_view left_stride ;
stride_view right_stride ;
long left_alloc ;
long right_alloc ;
TestViewOperator_LeftAndRight(unsigned N0, unsigned N1, unsigned N2)
: left( std::string("left") , N0, N1, N2 )
, right( std::string("right") , N0, N1, N2 )
, left_stride( left )
, right_stride( right )
, left_alloc( allocation_count( left ) )
, right_alloc( allocation_count( right ) )
{}
static void testit(unsigned N0, unsigned N1, unsigned N2)
{
TestViewOperator_LeftAndRight driver (N0, N1, N2);
int error_flag = 0 ;
Kokkos::parallel_reduce( 1 , driver , error_flag );
ASSERT_EQ( error_flag , 0 );
}
KOKKOS_INLINE_FUNCTION
void operator()( const size_type , value_type & update ) const
{
long offset ;
offset = -1 ;
for ( unsigned i2 = 0 ; i2 < unsigned(left.dimension_2()) ; ++i2 )
for ( unsigned i1 = 0 ; i1 < unsigned(left.dimension_1()) ; ++i1 )
for ( unsigned i0 = 0 ; i0 < unsigned(left.dimension_0()) ; ++i0 )
{
const long j = & left( i0, i1, i2 ) -
& left( 0, 0, 0 );
if ( j <= offset || left_alloc <= j ) { update |= 1 ; }
offset = j ;
if ( & left(i0,i1,i2) != & left_stride(i0,i1,i2) ) { update |= 4 ; }
}
offset = -1 ;
for ( unsigned i0 = 0 ; i0 < unsigned(right.dimension_0()) ; ++i0 )
for ( unsigned i1 = 0 ; i1 < unsigned(right.dimension_1()) ; ++i1 )
for ( unsigned i2 = 0 ; i2 < unsigned(right.dimension_2()) ; ++i2 )
{
const long j = & right( i0, i1, i2 ) -
& right( 0, 0, 0 );
if ( j <= offset || right_alloc <= j ) { update |= 2 ; }
offset = j ;
if ( & right(i0,i1,i2) != & right_stride(i0,i1,i2) ) { update |= 8 ; }
}
for ( unsigned i0 = 0 ; i0 < unsigned(left.dimension_0()) ; ++i0 )
for ( unsigned i1 = 0 ; i1 < unsigned(left.dimension_1()) ; ++i1 )
for ( unsigned i2 = 0 ; i2 < unsigned(left.dimension_2()) ; ++i2 )
{
if ( & left(i0,i1,i2) != & left(i0,i1,i2,0,0,0,0) ) { update |= 3 ; }
if ( & right(i0,i1,i2) != & right(i0,i1,i2,0,0,0,0) ) { update |= 3 ; }
}
}
};
template< class DataType , class DeviceType >
struct TestViewOperator_LeftAndRight< DataType , DeviceType , 2 >
{
typedef DeviceType execution_space ;
typedef typename execution_space::memory_space memory_space ;
typedef typename execution_space::size_type size_type ;
typedef int value_type ;
KOKKOS_INLINE_FUNCTION
static void join( volatile value_type & update ,
const volatile value_type & input )
{ update |= input ; }
KOKKOS_INLINE_FUNCTION
static void init( value_type & update )
{ update = 0 ; }
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ;
left_view left ;
right_view right ;
long left_alloc ;
long right_alloc ;
TestViewOperator_LeftAndRight(unsigned N0, unsigned N1)
: left( "left" , N0, N1 )
, right( "right" , N0, N1 )
, left_alloc( allocation_count( left ) )
, right_alloc( allocation_count( right ) )
{}
static void testit(unsigned N0, unsigned N1)
{
TestViewOperator_LeftAndRight driver(N0, N1);
int error_flag = 0 ;
Kokkos::parallel_reduce( 1 , driver , error_flag );
ASSERT_EQ( error_flag , 0 );
}
KOKKOS_INLINE_FUNCTION
void operator()( const size_type , value_type & update ) const
{
long offset ;
offset = -1 ;
for ( unsigned i1 = 0 ; i1 < unsigned(left.dimension_1()) ; ++i1 )
for ( unsigned i0 = 0 ; i0 < unsigned(left.dimension_0()) ; ++i0 )
{
const long j = & left( i0, i1 ) -
& left( 0, 0 );
if ( j <= offset || left_alloc <= j ) { update |= 1 ; }
offset = j ;
}
offset = -1 ;
for ( unsigned i0 = 0 ; i0 < unsigned(right.dimension_0()) ; ++i0 )
for ( unsigned i1 = 0 ; i1 < unsigned(right.dimension_1()) ; ++i1 )
{
const long j = & right( i0, i1 ) -
& right( 0, 0 );
if ( j <= offset || right_alloc <= j ) { update |= 2 ; }
offset = j ;
}
for ( unsigned i0 = 0 ; i0 < unsigned(left.dimension_0()) ; ++i0 )
for ( unsigned i1 = 0 ; i1 < unsigned(left.dimension_1()) ; ++i1 )
{
if ( & left(i0,i1) != & left(i0,i1,0,0,0,0,0) ) { update |= 3 ; }
if ( & right(i0,i1) != & right(i0,i1,0,0,0,0,0) ) { update |= 3 ; }
}
}
};
template< class DataType , class DeviceType >
struct TestViewOperator_LeftAndRight< DataType , DeviceType , 1 >
{
typedef DeviceType execution_space ;
typedef typename execution_space::memory_space memory_space ;
typedef typename execution_space::size_type size_type ;
typedef int value_type ;
KOKKOS_INLINE_FUNCTION
static void join( volatile value_type & update ,
const volatile value_type & input )
{ update |= input ; }
KOKKOS_INLINE_FUNCTION
static void init( value_type & update )
{ update = 0 ; }
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutLeft, execution_space > left_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutRight, execution_space > right_view ;
typedef Kokkos::
Experimental::DynRankView< DataType, Kokkos::LayoutStride, execution_space > stride_view ;
left_view left ;
right_view right ;
stride_view left_stride ;
stride_view right_stride ;
long left_alloc ;
long right_alloc ;
TestViewOperator_LeftAndRight(unsigned N0)
: left( "left" , N0 )
, right( "right" , N0 )
, left_stride( left )
, right_stride( right )
, left_alloc( allocation_count( left ) )
, right_alloc( allocation_count( right ) )
{}
static void testit(unsigned N0)
{
TestViewOperator_LeftAndRight driver (N0) ;
int error_flag = 0 ;
Kokkos::parallel_reduce( 1 , driver , error_flag );
ASSERT_EQ( error_flag , 0 );
}
KOKKOS_INLINE_FUNCTION
void operator()( const size_type , value_type & update ) const
{
for ( unsigned i0 = 0 ; i0 < unsigned(left.dimension_0()) ; ++i0 )
{
if ( & left(i0) != & left(i0,0,0,0,0,0,0) ) { update |= 3 ; }
if ( & right(i0) != & right(i0,0,0,0,0,0,0) ) { update |= 3 ; }
if ( & left(i0) != & left_stride(i0) ) { update |= 4 ; }
if ( & right(i0) != & right_stride(i0) ) { update |= 8 ; }
}
}
};
/*--------------------------------------------------------------------------*/
template< typename T, class DeviceType >
class TestDynViewAPI
{
public:
typedef DeviceType device ;
enum { N0 = 1000 ,
N1 = 3 ,
N2 = 5 ,
N3 = 7 };
typedef Kokkos::Experimental::DynRankView< T , device > dView0 ;
typedef Kokkos::Experimental::DynRankView< const T , device > const_dView0 ;
typedef Kokkos::Experimental::DynRankView< T, device, Kokkos::MemoryUnmanaged > dView0_unmanaged ;
typedef typename dView0::host_mirror_space host_drv_space ;
typedef Kokkos::Experimental::View< T , device > View0 ;
typedef Kokkos::Experimental::View< T* , device > View1 ;
typedef Kokkos::Experimental::View< T******* , device > View7 ;
typedef typename View0::host_mirror_space host_view_space ;
TestDynViewAPI()
{
run_test_resize_realloc();
run_test_mirror();
run_test_scalar();
run_test();
run_test_const();
run_test_subview();
run_test_subview_strided();
run_test_vector();
TestViewOperator< T , device >::testit();
TestViewOperator_LeftAndRight< int , device , 7 >::testit(2,3,4,2,3,4,2);
TestViewOperator_LeftAndRight< int , device , 6 >::testit(2,3,4,2,3,4);
TestViewOperator_LeftAndRight< int , device , 5 >::testit(2,3,4,2,3);
TestViewOperator_LeftAndRight< int , device , 4 >::testit(2,3,4,2);
TestViewOperator_LeftAndRight< int , device , 3 >::testit(2,3,4);
TestViewOperator_LeftAndRight< int , device , 2 >::testit(2,3);
TestViewOperator_LeftAndRight< int , device , 1 >::testit(2);
}
static void run_test_resize_realloc()
{
dView0 drv0("drv0", 10, 20, 30);
ASSERT_EQ( drv0.rank(), 3);
Kokkos::Experimental::resize(drv0, 5, 10);
ASSERT_EQ( drv0.rank(), 2);
ASSERT_EQ( drv0.dimension_0(), 5);
ASSERT_EQ( drv0.dimension_1(), 10);
ASSERT_EQ( drv0.dimension_2(), 1);
Kokkos::Experimental::realloc(drv0, 10, 20);
ASSERT_EQ( drv0.rank(), 2);
ASSERT_EQ( drv0.dimension_0(), 10);
ASSERT_EQ( drv0.dimension_1(), 20);
ASSERT_EQ( drv0.dimension_2(), 1);
}
static void run_test_mirror()
{
typedef Kokkos::Experimental::DynRankView< int , host_drv_space > view_type ;
typedef typename view_type::HostMirror mirror_type ;
view_type a("a");
mirror_type am = Kokkos::Experimental::create_mirror_view(a);
mirror_type ax = Kokkos::Experimental::create_mirror(a);
ASSERT_EQ( & a() , & am() );
ASSERT_EQ( a.rank() , am.rank() );
ASSERT_EQ( ax.rank() , am.rank() );
if (Kokkos::HostSpace::execution_space::is_initialized() )
{
Kokkos::DynRankView<double, Kokkos::LayoutLeft, Kokkos::HostSpace> a_h("A",1000);
auto a_h2 = Kokkos::create_mirror(Kokkos::HostSpace(),a_h);
auto a_d = Kokkos::create_mirror(typename device::memory_space(),a_h);
int equal_ptr_h_h2 = (a_h.data() ==a_h2.data())?1:0;
int equal_ptr_h_d = (a_h.data() ==a_d. data())?1:0;
int equal_ptr_h2_d = (a_h2.data()==a_d. data())?1:0;
ASSERT_EQ(equal_ptr_h_h2,0);
ASSERT_EQ(equal_ptr_h_d ,0);
ASSERT_EQ(equal_ptr_h2_d,0);
ASSERT_EQ(a_h.dimension_0(),a_h2.dimension_0());
ASSERT_EQ(a_h.dimension_0(),a_d .dimension_0());
ASSERT_EQ(a_h.rank(),a_h2.rank());
ASSERT_EQ(a_h.rank(),a_d.rank());
}
if (Kokkos::HostSpace::execution_space::is_initialized() )
{
Kokkos::DynRankView<double, Kokkos::LayoutRight, Kokkos::HostSpace> a_h("A",1000);
auto a_h2 = Kokkos::create_mirror(Kokkos::HostSpace(),a_h);
auto a_d = Kokkos::create_mirror(typename device::memory_space(),a_h);
int equal_ptr_h_h2 = (a_h.data() ==a_h2.data())?1:0;
int equal_ptr_h_d = (a_h.data() ==a_d. data())?1:0;
int equal_ptr_h2_d = (a_h2.data()==a_d. data())?1:0;
ASSERT_EQ(equal_ptr_h_h2,0);
ASSERT_EQ(equal_ptr_h_d ,0);
ASSERT_EQ(equal_ptr_h2_d,0);
ASSERT_EQ(a_h.dimension_0(),a_h2.dimension_0());
ASSERT_EQ(a_h.dimension_0(),a_d .dimension_0());
ASSERT_EQ(a_h.rank(),a_h2.rank());
ASSERT_EQ(a_h.rank(),a_d.rank());
}
if (Kokkos::HostSpace::execution_space::is_initialized() )
{
Kokkos::DynRankView<double, Kokkos::LayoutLeft, Kokkos::HostSpace> a_h("A",1000);
auto a_h2 = Kokkos::create_mirror_view(Kokkos::HostSpace(),a_h);
auto a_d = Kokkos::create_mirror_view(typename device::memory_space(),a_h);
int equal_ptr_h_h2 = a_h.data() ==a_h2.data()?1:0;
int equal_ptr_h_d = a_h.data() ==a_d. data()?1:0;
int equal_ptr_h2_d = a_h2.data()==a_d. data()?1:0;
int is_same_memspace = std::is_same<Kokkos::HostSpace,typename device::memory_space>::value?1:0;
ASSERT_EQ(equal_ptr_h_h2,1);
ASSERT_EQ(equal_ptr_h_d ,is_same_memspace);
ASSERT_EQ(equal_ptr_h2_d ,is_same_memspace);
ASSERT_EQ(a_h.dimension_0(),a_h2.dimension_0());
ASSERT_EQ(a_h.dimension_0(),a_d .dimension_0());
ASSERT_EQ(a_h.rank(),a_h2.rank());
ASSERT_EQ(a_h.rank(),a_d.rank());
}
if (Kokkos::HostSpace::execution_space::is_initialized() )
{
Kokkos::DynRankView<double, Kokkos::LayoutRight, Kokkos::HostSpace> a_h("A",1000);
auto a_h2 = Kokkos::create_mirror_view(Kokkos::HostSpace(),a_h);
auto a_d = Kokkos::create_mirror_view(typename device::memory_space(),a_h);
int equal_ptr_h_h2 = a_h.data() ==a_h2.data()?1:0;
int equal_ptr_h_d = a_h.data() ==a_d. data()?1:0;
int equal_ptr_h2_d = a_h2.data()==a_d. data()?1:0;
int is_same_memspace = std::is_same<Kokkos::HostSpace,typename device::memory_space>::value?1:0;
ASSERT_EQ(equal_ptr_h_h2,1);
ASSERT_EQ(equal_ptr_h_d ,is_same_memspace);
ASSERT_EQ(equal_ptr_h2_d ,is_same_memspace);
ASSERT_EQ(a_h.dimension_0(),a_h2.dimension_0());
ASSERT_EQ(a_h.dimension_0(),a_d .dimension_0());
ASSERT_EQ(a_h.rank(),a_h2.rank());
ASSERT_EQ(a_h.rank(),a_d.rank());
}
if (Kokkos::HostSpace::execution_space::is_initialized() )
{
typedef Kokkos::DynRankView< int , Kokkos::LayoutStride , Kokkos::HostSpace > view_stride_type ;
unsigned order[] = { 6,5,4,3,2,1,0 }, dimen[] = { N0, N1, N2, 2, 2, 2, 2 }; //LayoutRight equivalent
view_stride_type a_h( "a" , Kokkos::LayoutStride::order_dimensions(7, order, dimen) );
auto a_h2 = Kokkos::create_mirror_view(Kokkos::HostSpace(),a_h);
auto a_d = Kokkos::create_mirror_view(typename device::memory_space(),a_h);
int equal_ptr_h_h2 = a_h.data() ==a_h2.data()?1:0;
int equal_ptr_h_d = a_h.data() ==a_d. data()?1:0;
int equal_ptr_h2_d = a_h2.data()==a_d. data()?1:0;
int is_same_memspace = std::is_same<Kokkos::HostSpace,typename device::memory_space>::value?1:0;
ASSERT_EQ(equal_ptr_h_h2,1);
ASSERT_EQ(equal_ptr_h_d ,is_same_memspace);
ASSERT_EQ(equal_ptr_h2_d ,is_same_memspace);
ASSERT_EQ(a_h.dimension_0(),a_h2.dimension_0());
ASSERT_EQ(a_h.dimension_0(),a_d .dimension_0());
ASSERT_EQ(a_h.rank(),a_h2.rank());
ASSERT_EQ(a_h.rank(),a_d.rank());
}
}
static void run_test_scalar()
{
typedef typename dView0::HostMirror hView0 ; //HostMirror of DynRankView is a DynRankView
dView0 dx , dy ;
hView0 hx , hy ;
dx = dView0( "dx" );
dy = dView0( "dy" );
hx = Kokkos::Experimental::create_mirror( dx );
hy = Kokkos::Experimental::create_mirror( dy );
hx() = 1 ;
Kokkos::Experimental::deep_copy( dx , hx );
Kokkos::Experimental::deep_copy( dy , dx );
Kokkos::Experimental::deep_copy( hy , dy );
ASSERT_EQ( hx(), hy() );
ASSERT_EQ( dx.rank() , hx.rank() );
ASSERT_EQ( dy.rank() , hy.rank() );
//View - DynRankView Interoperability tests
// deep_copy DynRankView to View
View0 vx("vx");
Kokkos::deep_copy( vx , dx );
ASSERT_EQ( rank(dx) , rank(vx) );
View0 vy("vy");
Kokkos::deep_copy( vy , dy );
ASSERT_EQ( rank(dy) , rank(vy) );
// deep_copy View to DynRankView
dView0 dxx("dxx");
Kokkos::deep_copy( dxx , vx );
ASSERT_EQ( rank(dxx) , rank(vx) );
View7 vcast = dx.ConstDownCast();
ASSERT_EQ( dx.dimension_0() , vcast.dimension_0() );
ASSERT_EQ( dx.dimension_1() , vcast.dimension_1() );
ASSERT_EQ( dx.dimension_2() , vcast.dimension_2() );
ASSERT_EQ( dx.dimension_3() , vcast.dimension_3() );
ASSERT_EQ( dx.dimension_4() , vcast.dimension_4() );
View7 vcast1( dy.ConstDownCast() );
ASSERT_EQ( dy.dimension_0() , vcast1.dimension_0() );
ASSERT_EQ( dy.dimension_1() , vcast1.dimension_1() );
ASSERT_EQ( dy.dimension_2() , vcast1.dimension_2() );
ASSERT_EQ( dy.dimension_3() , vcast1.dimension_3() );
ASSERT_EQ( dy.dimension_4() , vcast1.dimension_4() );
//View - DynRankView Interoperability tests
// copy View to DynRankView
dView0 dfromvx( vx );
auto hmx = Kokkos::create_mirror_view(dfromvx) ;
Kokkos::deep_copy(hmx , dfromvx);
auto hvx = Kokkos::create_mirror_view(vx) ;
Kokkos::deep_copy(hvx , vx);
ASSERT_EQ( rank(hvx) , rank(hmx) );
ASSERT_EQ( hvx.dimension_0() , hmx.dimension_0() );
ASSERT_EQ( hvx.dimension_1() , hmx.dimension_1() );
// copy-assign View to DynRankView
dView0 dfromvy = vy ;
auto hmy = Kokkos::create_mirror_view(dfromvy) ;
Kokkos::deep_copy(hmy , dfromvy);
auto hvy = Kokkos::create_mirror_view(vy) ;
Kokkos::deep_copy(hvy , vy);
ASSERT_EQ( rank(hvy) , rank(hmy) );
ASSERT_EQ( hvy.dimension_0() , hmy.dimension_0() );
ASSERT_EQ( hvy.dimension_1() , hmy.dimension_1() );
View7 vtest1("vtest1",2,2,2,2,2,2,2);
dView0 dfromv1( vtest1 );
ASSERT_EQ( dfromv1.rank() , vtest1.Rank );
ASSERT_EQ( dfromv1.dimension_0() , vtest1.dimension_0() );
ASSERT_EQ( dfromv1.dimension_1() , vtest1.dimension_1() );
ASSERT_EQ( dfromv1.use_count() , vtest1.use_count() );
dView0 dfromv2( vcast );
ASSERT_EQ( dfromv2.rank() , vcast.Rank );
ASSERT_EQ( dfromv2.dimension_0() , vcast.dimension_0() );
ASSERT_EQ( dfromv2.dimension_1() , vcast.dimension_1() );
ASSERT_EQ( dfromv2.use_count() , vcast.use_count() );
dView0 dfromv3 = vcast1;
ASSERT_EQ( dfromv3.rank() , vcast1.Rank );
ASSERT_EQ( dfromv3.dimension_0() , vcast1.dimension_0() );
ASSERT_EQ( dfromv3.dimension_1() , vcast1.dimension_1() );
ASSERT_EQ( dfromv3.use_count() , vcast1.use_count() );
}
static void run_test()
{
// mfh 14 Feb 2014: This test doesn't actually create instances of
// these types. In order to avoid "declared but unused typedef"
// warnings, we declare empty instances of these types, with the
// usual "(void)" marker to avoid compiler warnings for unused
// variables.
typedef typename dView0::HostMirror hView0 ;
{
hView0 thing;
(void) thing;
}
dView0 d_uninitialized(Kokkos::ViewAllocateWithoutInitializing("uninit"),10,20);
ASSERT_TRUE( d_uninitialized.data() != nullptr );
ASSERT_EQ( d_uninitialized.rank() , 2 );
ASSERT_EQ( d_uninitialized.dimension_0() , 10 );
ASSERT_EQ( d_uninitialized.dimension_1() , 20 );
ASSERT_EQ( d_uninitialized.dimension_2() , 1 );
dView0 dx , dy , dz ;
hView0 hx , hy , hz ;
ASSERT_TRUE( Kokkos::Experimental::is_dyn_rank_view<dView0>::value );
ASSERT_FALSE( Kokkos::Experimental::is_dyn_rank_view< Kokkos::View<double> >::value );
ASSERT_TRUE( dx.ptr_on_device() == 0 ); //Okay with UVM
ASSERT_TRUE( dy.ptr_on_device() == 0 ); //Okay with UVM
ASSERT_TRUE( dz.ptr_on_device() == 0 ); //Okay with UVM
ASSERT_TRUE( hx.ptr_on_device() == 0 );
ASSERT_TRUE( hy.ptr_on_device() == 0 );
ASSERT_TRUE( hz.ptr_on_device() == 0 );
ASSERT_EQ( dx.dimension_0() , 0u ); //Okay with UVM
ASSERT_EQ( dy.dimension_0() , 0u ); //Okay with UVM
ASSERT_EQ( dz.dimension_0() , 0u ); //Okay with UVM
ASSERT_EQ( hx.dimension_0() , 0u );
ASSERT_EQ( hy.dimension_0() , 0u );
ASSERT_EQ( hz.dimension_0() , 0u );
ASSERT_EQ( dx.rank() , 0u ); //Okay with UVM
ASSERT_EQ( hx.rank() , 0u );
dx = dView0( "dx" , N1 , N2 , N3 );
dy = dView0( "dy" , N1 , N2 , N3 );
hx = hView0( "hx" , N1 , N2 , N3 );
hy = hView0( "hy" , N1 , N2 , N3 );
ASSERT_EQ( dx.dimension_0() , unsigned(N1) ); //Okay with UVM
ASSERT_EQ( dy.dimension_0() , unsigned(N1) ); //Okay with UVM
ASSERT_EQ( hx.dimension_0() , unsigned(N1) );
ASSERT_EQ( hy.dimension_0() , unsigned(N1) );
ASSERT_EQ( dx.rank() , 3 ); //Okay with UVM
ASSERT_EQ( hx.rank() , 3 );
dx = dView0( "dx" , N0 , N1 , N2 , N3 );
dy = dView0( "dy" , N0 , N1 , N2 , N3 );
hx = hView0( "hx" , N0 , N1 , N2 , N3 );
hy = hView0( "hy" , N0 , N1 , N2 , N3 );
ASSERT_EQ( dx.dimension_0() , unsigned(N0) );
ASSERT_EQ( dy.dimension_0() , unsigned(N0) );
ASSERT_EQ( hx.dimension_0() , unsigned(N0) );
ASSERT_EQ( hy.dimension_0() , unsigned(N0) );
ASSERT_EQ( dx.rank() , 4 );
ASSERT_EQ( dy.rank() , 4 );
ASSERT_EQ( hx.rank() , 4 );
ASSERT_EQ( hy.rank() , 4 );
ASSERT_EQ( dx.use_count() , size_t(1) );
dView0_unmanaged unmanaged_dx = dx;
ASSERT_EQ( dx.use_count() , size_t(1) );
dView0_unmanaged unmanaged_from_ptr_dx = dView0_unmanaged(dx.ptr_on_device(),
dx.dimension_0(),
dx.dimension_1(),
dx.dimension_2(),
dx.dimension_3());
{
// Destruction of this view should be harmless
const_dView0 unmanaged_from_ptr_const_dx( dx.ptr_on_device() ,
dx.dimension_0() ,
dx.dimension_1() ,
dx.dimension_2() ,
dx.dimension_3() );
}
const_dView0 const_dx = dx ;
ASSERT_EQ( dx.use_count() , size_t(2) );
{
const_dView0 const_dx2;
const_dx2 = const_dx;
ASSERT_EQ( dx.use_count() , size_t(3) );
const_dx2 = dy;
ASSERT_EQ( dx.use_count() , size_t(2) );
const_dView0 const_dx3(dx);
ASSERT_EQ( dx.use_count() , size_t(3) );
dView0_unmanaged dx4_unmanaged(dx);
ASSERT_EQ( dx.use_count() , size_t(3) );
}
ASSERT_EQ( dx.use_count() , size_t(2) );
ASSERT_FALSE( dx.ptr_on_device() == 0 );
ASSERT_FALSE( const_dx.ptr_on_device() == 0 );
ASSERT_FALSE( unmanaged_dx.ptr_on_device() == 0 );
ASSERT_FALSE( unmanaged_from_ptr_dx.ptr_on_device() == 0 );
ASSERT_FALSE( dy.ptr_on_device() == 0 );
ASSERT_NE( dx , dy );
ASSERT_EQ( dx.dimension_0() , unsigned(N0) );
ASSERT_EQ( dx.dimension_1() , unsigned(N1) );
ASSERT_EQ( dx.dimension_2() , unsigned(N2) );
ASSERT_EQ( dx.dimension_3() , unsigned(N3) );
ASSERT_EQ( dy.dimension_0() , unsigned(N0) );
ASSERT_EQ( dy.dimension_1() , unsigned(N1) );
ASSERT_EQ( dy.dimension_2() , unsigned(N2) );
ASSERT_EQ( dy.dimension_3() , unsigned(N3) );
ASSERT_EQ( unmanaged_from_ptr_dx.capacity(),unsigned(N0)*unsigned(N1)*unsigned(N2)*unsigned(N3) );
hx = Kokkos::Experimental::create_mirror( dx );
hy = Kokkos::Experimental::create_mirror( dy );
ASSERT_EQ( hx.rank() , dx.rank() );
ASSERT_EQ( hy.rank() , dy.rank() );
ASSERT_EQ( hx.dimension_0() , unsigned(N0) );
ASSERT_EQ( hx.dimension_1() , unsigned(N1) );
ASSERT_EQ( hx.dimension_2() , unsigned(N2) );
ASSERT_EQ( hx.dimension_3() , unsigned(N3) );
ASSERT_EQ( hy.dimension_0() , unsigned(N0) );
ASSERT_EQ( hy.dimension_1() , unsigned(N1) );
ASSERT_EQ( hy.dimension_2() , unsigned(N2) );
ASSERT_EQ( hy.dimension_3() , unsigned(N3) );
// T v1 = hx() ; // Generates compile error as intended
// T v2 = hx(0,0) ; // Generates compile error as intended
// hx(0,0) = v2 ; // Generates compile error as intended
/*
#if ! KOKKOS_USING_EXP_VIEW
// Testing with asynchronous deep copy with respect to device
{
size_t count = 0 ;
for ( size_t ip = 0 ; ip < N0 ; ++ip ) {
for ( size_t i1 = 0 ; i1 < hx.dimension_1() ; ++i1 ) {
for ( size_t i2 = 0 ; i2 < hx.dimension_2() ; ++i2 ) {
for ( size_t i3 = 0 ; i3 < hx.dimension_3() ; ++i3 ) {
hx(ip,i1,i2,i3) = ++count ;
}}}}
Kokkos::deep_copy(typename hView0::execution_space(), dx , hx );
Kokkos::deep_copy(typename hView0::execution_space(), dy , dx );
Kokkos::deep_copy(typename hView0::execution_space(), hy , dy );
for ( size_t ip = 0 ; ip < N0 ; ++ip ) {
for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) {
for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) {
for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) {
{ ASSERT_EQ( hx(ip,i1,i2,i3) , hy(ip,i1,i2,i3) ); }
}}}}
Kokkos::deep_copy(typename hView0::execution_space(), dx , T(0) );
Kokkos::deep_copy(typename hView0::execution_space(), hx , dx );
for ( size_t ip = 0 ; ip < N0 ; ++ip ) {
for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) {
for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) {
for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) {
{ ASSERT_EQ( hx(ip,i1,i2,i3) , T(0) ); }
}}}}
}
// Testing with asynchronous deep copy with respect to host
{
size_t count = 0 ;
for ( size_t ip = 0 ; ip < N0 ; ++ip ) {
for ( size_t i1 = 0 ; i1 < hx.dimension_1() ; ++i1 ) {
for ( size_t i2 = 0 ; i2 < hx.dimension_2() ; ++i2 ) {
for ( size_t i3 = 0 ; i3 < hx.dimension_3() ; ++i3 ) {
hx(ip,i1,i2,i3) = ++count ;
}}}}
Kokkos::deep_copy(typename dView0::execution_space(), dx , hx );
Kokkos::deep_copy(typename dView0::execution_space(), dy , dx );
Kokkos::deep_copy(typename dView0::execution_space(), hy , dy );
for ( size_t ip = 0 ; ip < N0 ; ++ip ) {
for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) {
for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) {
for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) {
{ ASSERT_EQ( hx(ip,i1,i2,i3) , hy(ip,i1,i2,i3) ); }
}}}}
Kokkos::deep_copy(typename dView0::execution_space(), dx , T(0) );
Kokkos::deep_copy(typename dView0::execution_space(), hx , dx );
for ( size_t ip = 0 ; ip < N0 ; ++ip ) {
for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) {
for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) {
for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) {
{ ASSERT_EQ( hx(ip,i1,i2,i3) , T(0) ); }
}}}}
}
#endif */ // #if ! KOKKOS_USING_EXP_VIEW
// Testing with synchronous deep copy
{
size_t count = 0 ;
for ( size_t ip = 0 ; ip < N0 ; ++ip ) {
for ( size_t i1 = 0 ; i1 < hx.dimension_1() ; ++i1 ) {
for ( size_t i2 = 0 ; i2 < hx.dimension_2() ; ++i2 ) {
for ( size_t i3 = 0 ; i3 < hx.dimension_3() ; ++i3 ) {
hx(ip,i1,i2,i3) = ++count ;
}}}}
Kokkos::Experimental::deep_copy( dx , hx );
Kokkos::Experimental::deep_copy( dy , dx );
Kokkos::Experimental::deep_copy( hy , dy );
for ( size_t ip = 0 ; ip < N0 ; ++ip ) {
for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) {
for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) {
for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) {
{ ASSERT_EQ( hx(ip,i1,i2,i3) , hy(ip,i1,i2,i3) ); }
}}}}
Kokkos::Experimental::deep_copy( dx , T(0) );
Kokkos::Experimental::deep_copy( hx , dx );
for ( size_t ip = 0 ; ip < N0 ; ++ip ) {
for ( size_t i1 = 0 ; i1 < N1 ; ++i1 ) {
for ( size_t i2 = 0 ; i2 < N2 ; ++i2 ) {
for ( size_t i3 = 0 ; i3 < N3 ; ++i3 ) {
{ ASSERT_EQ( hx(ip,i1,i2,i3) , T(0) ); }
}}}}
// ASSERT_EQ( hx(0,0,0,0,0,0,0,0) , T(0) ); //Test rank8 op behaves properly - if implemented
}
dz = dx ; ASSERT_EQ( dx, dz); ASSERT_NE( dy, dz);
dz = dy ; ASSERT_EQ( dy, dz); ASSERT_NE( dx, dz);
dx = dView0();
ASSERT_TRUE( dx.ptr_on_device() == 0 );
ASSERT_FALSE( dy.ptr_on_device() == 0 );
ASSERT_FALSE( dz.ptr_on_device() == 0 );
dy = dView0();
ASSERT_TRUE( dx.ptr_on_device() == 0 );
ASSERT_TRUE( dy.ptr_on_device() == 0 );
ASSERT_FALSE( dz.ptr_on_device() == 0 );
dz = dView0();
ASSERT_TRUE( dx.ptr_on_device() == 0 );
ASSERT_TRUE( dy.ptr_on_device() == 0 );
ASSERT_TRUE( dz.ptr_on_device() == 0 );
//View - DynRankView Interoperability tests
// deep_copy from view to dynrankview
const int testdim = 4;
dView0 dxx("dxx",testdim);
View1 vxx("vxx",testdim);
auto hvxx = Kokkos::create_mirror_view(vxx);
for (int i = 0; i < testdim; ++i)
{ hvxx(i) = i; }
Kokkos::deep_copy(vxx,hvxx);
Kokkos::deep_copy(dxx,vxx);
auto hdxx = Kokkos::create_mirror_view(dxx);
Kokkos::deep_copy(hdxx,dxx);
for (int i = 0; i < testdim; ++i)
{ ASSERT_EQ( hvxx(i) , hdxx(i) ); }
ASSERT_EQ( rank(hdxx) , rank(hvxx) );
ASSERT_EQ( hdxx.dimension_0() , testdim );
ASSERT_EQ( hdxx.dimension_0() , hvxx.dimension_0() );
// deep_copy from dynrankview to view
View1 vdxx("vdxx",testdim);
auto hvdxx = Kokkos::create_mirror_view(vdxx);
Kokkos::deep_copy(hvdxx , hdxx);
ASSERT_EQ( rank(hdxx) , rank(hvdxx) );
ASSERT_EQ( hvdxx.dimension_0() , testdim );
ASSERT_EQ( hdxx.dimension_0() , hvdxx.dimension_0() );
for (int i = 0; i < testdim; ++i)
{ ASSERT_EQ( hvxx(i) , hvdxx(i) ); }
}
typedef T DataType ;
static void
check_auto_conversion_to_const(
const Kokkos::Experimental::DynRankView< const DataType , device > & arg_const ,
const Kokkos::Experimental::DynRankView< DataType , device > & arg )
{
ASSERT_TRUE( arg_const == arg );
}
static void run_test_const()
{
typedef Kokkos::Experimental::DynRankView< DataType , device > typeX ;
typedef Kokkos::Experimental::DynRankView< const DataType , device > const_typeX ;
typedef Kokkos::Experimental::DynRankView< const DataType , device , Kokkos::MemoryRandomAccess > const_typeR ;
typeX x( "X", 2 );
const_typeX xc = x ;
const_typeR xr = x ;
ASSERT_TRUE( xc == x );
ASSERT_TRUE( x == xc );
// For CUDA the constant random access View does not return
// an lvalue reference due to retrieving through texture cache
// therefore not allowed to query the underlying pointer.
#if defined(KOKKOS_HAVE_CUDA)
if ( ! std::is_same< typename device::execution_space , Kokkos::Cuda >::value )
#endif
{
ASSERT_TRUE( x.ptr_on_device() == xr.ptr_on_device() );
}
// typeX xf = xc ; // setting non-const from const must not compile
check_auto_conversion_to_const( x , x );
}
static void run_test_subview()
{
typedef Kokkos::Experimental::DynRankView< const T , device > cdView ;
typedef Kokkos::Experimental::DynRankView< T , device > dView ;
// LayoutStride required for all returned DynRankView subdynrankview's
typedef Kokkos::Experimental::DynRankView< T , Kokkos::LayoutStride , device > sdView ;
dView0 d0( "d0" );
cdView s0 = d0 ;
// N0 = 1000,N1 = 3,N2 = 5,N3 = 7
unsigned order[] = { 6,5,4,3,2,1,0 }, dimen[] = { N0, N1, N2, 2, 2, 2, 2 }; //LayoutRight equivalent
sdView d7( "d7" , Kokkos::LayoutStride::order_dimensions(7, order, dimen) );
ASSERT_EQ( d7.rank() , 7 );
sdView ds0 = Kokkos::subdynrankview( d7 , 1 , 1 , 1 , 1 , 1 , 1 , 1 );
ASSERT_EQ( ds0.rank() , 0 );
//Basic test - ALL
sdView dsALL = Kokkos::Experimental::subdynrankview( d7 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() );
ASSERT_EQ( dsALL.rank() , 7 );
// Send a value to final rank returning rank 6 subview
sdView dsm1 = Kokkos::Experimental::subdynrankview( d7 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , 1 );
ASSERT_EQ( dsm1.rank() , 6 );
// Send a std::pair as argument to a rank
sdView dssp = Kokkos::Experimental::subdynrankview( d7 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , std::pair<unsigned,unsigned>(1,2) );
ASSERT_EQ( dssp.rank() , 7 );
// Send a kokkos::pair as argument to a rank; take default layout as input
dView0 dd0("dd0" , N0 , N1 , N2 , 2 , 2 , 2 , 2 ); //default layout
ASSERT_EQ( dd0.rank() , 7 );
sdView dtkp = Kokkos::Experimental::subdynrankview( dd0 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::pair<unsigned,unsigned>(0,1) );
ASSERT_EQ( dtkp.rank() , 7 );
// Return rank 7 subview, taking a pair as one argument, layout stride input
sdView ds7 = Kokkos::Experimental::subdynrankview( d7 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::pair<unsigned,unsigned>(0,1) );
ASSERT_EQ( ds7.rank() , 7 );
// Default Layout DynRankView
dView dv6("dv6" , N0 , N1 , N2 , N3 , 2 , 2 );
ASSERT_EQ( dv6.rank() , 6 );
// DynRankView with LayoutRight
typedef Kokkos::Experimental::DynRankView< T , Kokkos::LayoutRight , device > drView ;
drView dr5( "dr5" , N0 , N1 , N2 , 2 , 2 );
ASSERT_EQ( dr5.rank() , 5 );
// LayoutStride but arranged as LayoutRight
// NOTE: unused arg_layout dimensions must be set to ~size_t(0) so that
// rank deduction can properly take place
unsigned order5[] = { 4,3,2,1,0 }, dimen5[] = { N0, N1, N2, 2, 2 };
Kokkos::LayoutStride ls = Kokkos::LayoutStride::order_dimensions(5, order5, dimen5);
ls.dimension[5] = ~size_t(0);
ls.dimension[6] = ~size_t(0);
ls.dimension[7] = ~size_t(0);
sdView d5("d5", ls);
ASSERT_EQ( d5.rank() , 5 );
// LayoutStride arranged as LayoutRight - commented out as example that fails unit test
// unsigned order5[] = { 4,3,2,1,0 }, dimen5[] = { N0, N1, N2, 2, 2 };
// sdView d5( "d5" , Kokkos::LayoutStride::order_dimensions(5, order5, dimen5) );
//
// Fails the following unit test:
// ASSERT_EQ( d5.rank() , dr5.rank() );
//
// Explanation: In construction of the Kokkos::LayoutStride below, since the
// remaining dimensions are not specified, they will default to values of 0
// rather than ~size_t(0).
// When passed to the DynRankView constructor the default dimensions (of 0)
// will be counted toward the dynamic rank and returning an incorrect value
// (i.e. rank 7 rather than 5).
// Check LayoutRight dr5 and LayoutStride d5 dimensions agree (as they should)
ASSERT_EQ( d5.dimension_0() , dr5.dimension_0() );
ASSERT_EQ( d5.dimension_1() , dr5.dimension_1() );
ASSERT_EQ( d5.dimension_2() , dr5.dimension_2() );
ASSERT_EQ( d5.dimension_3() , dr5.dimension_3() );
ASSERT_EQ( d5.dimension_4() , dr5.dimension_4() );
ASSERT_EQ( d5.dimension_5() , dr5.dimension_5() );
ASSERT_EQ( d5.rank() , dr5.rank() );
// Rank 5 subview of rank 5 dynamic rank view, layout stride input
sdView ds5 = Kokkos::Experimental::subdynrankview( d5 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::pair<unsigned,unsigned>(0,1) );
ASSERT_EQ( ds5.rank() , 5 );
// Pass in extra ALL arguments beyond the rank of the DynRank View.
// This behavior is allowed - ignore the extra ALL arguments when
// the src.rank() < number of arguments, but be careful!
sdView ds5plus = Kokkos::Experimental::subdynrankview( d5 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::pair<unsigned,unsigned>(0,1) , Kokkos::ALL() );
ASSERT_EQ( ds5.rank() , ds5plus.rank() );
ASSERT_EQ( ds5.dimension_0() , ds5plus.dimension_0() );
ASSERT_EQ( ds5.dimension_4() , ds5plus.dimension_4() );
ASSERT_EQ( ds5.dimension_5() , ds5plus.dimension_5() );
#if ! defined( KOKKOS_HAVE_CUDA ) || defined ( KOKKOS_USE_CUDA_UVM )
ASSERT_EQ( & ds5(1,1,1,1,0) - & ds5plus(1,1,1,1,0) , 0 );
ASSERT_EQ( & ds5(1,1,1,1,0,0) - & ds5plus(1,1,1,1,0,0) , 0 ); // passing argument to rank beyond the view's rank is allowed iff it is a 0.
#endif
// Similar test to rank 5 above, but create rank 4 subview
// Check that the rank contracts (ds4 and ds4plus) and that subdynrankview can accept extra args (ds4plus)
sdView ds4 = Kokkos::Experimental::subdynrankview( d5 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , 0 );
sdView ds4plus = Kokkos::Experimental::subdynrankview( d5 , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , Kokkos::ALL() , 0 , Kokkos::ALL() );
ASSERT_EQ( ds4.rank() , ds4plus.rank() );
ASSERT_EQ( ds4.rank() , 4 );
ASSERT_EQ( ds4.dimension_0() , ds4plus.dimension_0() );
ASSERT_EQ( ds4.dimension_4() , ds4plus.dimension_4() );
ASSERT_EQ( ds4.dimension_5() , ds4plus.dimension_5() );
}
static void run_test_subview_strided()
{
typedef Kokkos::Experimental::DynRankView < int , Kokkos::LayoutLeft , host_drv_space > drview_left ;
typedef Kokkos::Experimental::DynRankView < int , Kokkos::LayoutRight , host_drv_space > drview_right ;
typedef Kokkos::Experimental::DynRankView < int , Kokkos::LayoutStride , host_drv_space > drview_stride ;
drview_left xl2( "xl2", 100 , 200 );
drview_right xr2( "xr2", 100 , 200 );
drview_stride yl1 = Kokkos::Experimental::subdynrankview( xl2 , 0 , Kokkos::ALL() );
drview_stride yl2 = Kokkos::Experimental::subdynrankview( xl2 , 1 , Kokkos::ALL() );
drview_stride ys1 = Kokkos::Experimental::subdynrankview( xr2 , 0 , Kokkos::ALL() );
drview_stride ys2 = Kokkos::Experimental::subdynrankview( xr2 , 1 , Kokkos::ALL() );
drview_stride yr1 = Kokkos::Experimental::subdynrankview( xr2 , 0 , Kokkos::ALL() );
drview_stride yr2 = Kokkos::Experimental::subdynrankview( xr2 , 1 , Kokkos::ALL() );
ASSERT_EQ( yl1.dimension_0() , xl2.dimension_1() );
ASSERT_EQ( yl2.dimension_0() , xl2.dimension_1() );
ASSERT_EQ( yr1.dimension_0() , xr2.dimension_1() );
ASSERT_EQ( yr2.dimension_0() , xr2.dimension_1() );
ASSERT_EQ( & yl1(0) - & xl2(0,0) , 0 );
ASSERT_EQ( & yl2(0) - & xl2(1,0) , 0 );
ASSERT_EQ( & yr1(0) - & xr2(0,0) , 0 );
ASSERT_EQ( & yr2(0) - & xr2(1,0) , 0 );
drview_left xl4( "xl4", 10 , 20 , 30 , 40 );
drview_right xr4( "xr4", 10 , 20 , 30 , 40 );
//Replace subdynrankview with subview - test
drview_stride yl4 = Kokkos::Experimental::subview( xl4 , 1 , Kokkos::ALL() , 2 , Kokkos::ALL() );
drview_stride yr4 = Kokkos::Experimental::subview( xr4 , 1 , Kokkos::ALL() , 2 , Kokkos::ALL() );
ASSERT_EQ( yl4.dimension_0() , xl4.dimension_1() );
ASSERT_EQ( yl4.dimension_1() , xl4.dimension_3() );
ASSERT_EQ( yr4.dimension_0() , xr4.dimension_1() );
ASSERT_EQ( yr4.dimension_1() , xr4.dimension_3() );
ASSERT_EQ( yl4.rank() , 2);
ASSERT_EQ( yr4.rank() , 2);
ASSERT_EQ( & yl4(4,4) - & xl4(1,4,2,4) , 0 );
ASSERT_EQ( & yr4(4,4) - & xr4(1,4,2,4) , 0 );
}
static void run_test_vector()
{
static const unsigned Length = 1000 , Count = 8 ;
typedef typename Kokkos::Experimental::DynRankView< T , Kokkos::LayoutLeft , host_drv_space > multivector_type ;
typedef typename Kokkos::Experimental::DynRankView< T , Kokkos::LayoutRight , host_drv_space > multivector_right_type ;
multivector_type mv = multivector_type( "mv" , Length , Count );
multivector_right_type mv_right = multivector_right_type( "mv" , Length , Count );
typedef typename Kokkos::Experimental::DynRankView< T , Kokkos::LayoutStride , host_drv_space > svector_type ;
typedef typename Kokkos::Experimental::DynRankView< T , Kokkos::LayoutStride , host_drv_space > smultivector_type ;
typedef typename Kokkos::Experimental::DynRankView< const T , Kokkos::LayoutStride , host_drv_space > const_svector_right_type ;
typedef typename Kokkos::Experimental::DynRankView< const T , Kokkos::LayoutStride , host_drv_space > const_svector_type ;
typedef typename Kokkos::Experimental::DynRankView< const T , Kokkos::LayoutStride , host_drv_space > const_smultivector_type ;
svector_type v1 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL() , 0 );
svector_type v2 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL() , 1 );
svector_type v3 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL() , 2 );
svector_type rv1 = Kokkos::Experimental::subdynrankview( mv_right , 0 , Kokkos::ALL() );
svector_type rv2 = Kokkos::Experimental::subdynrankview( mv_right , 1 , Kokkos::ALL() );
svector_type rv3 = Kokkos::Experimental::subdynrankview( mv_right , 2 , Kokkos::ALL() );
smultivector_type mv1 = Kokkos::Experimental::subdynrankview( mv , std::make_pair( 1 , 998 ) ,
std::make_pair( 2 , 5 ) );
smultivector_type mvr1 =
Kokkos::Experimental::subdynrankview( mv_right ,
std::make_pair( 1 , 998 ) ,
std::make_pair( 2 , 5 ) );
const_svector_type cv1 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL(), 0 );
const_svector_type cv2 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL(), 1 );
const_svector_type cv3 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL(), 2 );
svector_type vr1 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL() , 0 );
svector_type vr2 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL() , 1 );
svector_type vr3 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL() , 2 );
const_svector_right_type cvr1 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL() , 0 );
const_svector_right_type cvr2 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL() , 1 );
const_svector_right_type cvr3 = Kokkos::Experimental::subdynrankview( mv , Kokkos::ALL() , 2 );
ASSERT_TRUE( & v1[0] == & v1(0) );
ASSERT_TRUE( & v1[0] == & mv(0,0) );
ASSERT_TRUE( & v2[0] == & mv(0,1) );
ASSERT_TRUE( & v3[0] == & mv(0,2) );
ASSERT_TRUE( & cv1[0] == & mv(0,0) );
ASSERT_TRUE( & cv2[0] == & mv(0,1) );
ASSERT_TRUE( & cv3[0] == & mv(0,2) );
ASSERT_TRUE( & vr1[0] == & mv(0,0) );
ASSERT_TRUE( & vr2[0] == & mv(0,1) );
ASSERT_TRUE( & vr3[0] == & mv(0,2) );
ASSERT_TRUE( & cvr1[0] == & mv(0,0) );
ASSERT_TRUE( & cvr2[0] == & mv(0,1) );
ASSERT_TRUE( & cvr3[0] == & mv(0,2) );
ASSERT_TRUE( & mv1(0,0) == & mv( 1 , 2 ) );
ASSERT_TRUE( & mv1(1,1) == & mv( 2 , 3 ) );
ASSERT_TRUE( & mv1(3,2) == & mv( 4 , 4 ) );
ASSERT_TRUE( & mvr1(0,0) == & mv_right( 1 , 2 ) );
ASSERT_TRUE( & mvr1(1,1) == & mv_right( 2 , 3 ) );
ASSERT_TRUE( & mvr1(3,2) == & mv_right( 4 , 4 ) );
const_svector_type c_cv1( v1 );
typename svector_type::const_type c_cv2( v2 );
typename const_svector_type::const_type c_ccv2( v2 );
const_smultivector_type cmv( mv );
typename smultivector_type::const_type cmvX( cmv );
typename const_smultivector_type::const_type ccmvX( cmv );
}
};
} // namespace Test
/*--------------------------------------------------------------------------*/

Event Timeline