Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91086280
BoxMeshPartition.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 18:20
Size
13 KB
Mime Type
text/x-c
Expires
Sat, Nov 9, 18:20 (2 d)
Engine
blob
Format
Raw Data
Handle
22193867
Attached To
rLAMMPS lammps
BoxMeshPartition.cpp
View Options
/*
//@HEADER
// ************************************************************************
//
// Kokkos v. 2.0
// Copyright (2014) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact H. Carter Edwards (hcedwar@sandia.gov)
//
// ************************************************************************
//@HEADER
*/
#include <iostream>
#include <sstream>
#include <stdexcept>
#include <limits>
#include <BoxMeshPartition.hpp>
//----------------------------------------------------------------------------
namespace {
void box_partition( size_t ip , size_t up ,
const BoxType & box ,
BoxType * const p_box )
{
const size_t np = up - ip ;
if ( 1 == np ) {
p_box[ip] = box ;
}
else {
// Choose axis with largest count:
const size_t n0 = box[0][1] - box[0][0] ;
const size_t n1 = box[1][1] - box[1][0] ;
const size_t n2 = box[2][1] - box[2][0] ;
const size_t axis = n2 > n1 ? ( n2 > n0 ? 2 : ( n1 > n0 ? 1 : 0 ) ) :
( n1 > n0 ? 1 : 0 );
const size_t n = box[ axis ][1] - box[ axis ][0] ;
if ( 0 == np % 3 ) {
const size_t np_part = np / 3 ; // exact
const size_t nbox_low = (size_t)(( (double) n ) * ( 1.0 / 3.0 ));
const size_t nbox_mid = (size_t)(( (double) n ) * ( 2.0 / 3.0 ));
BoxType dbox_low = box ; // P = [ip,ip+np/3)
BoxType dbox_mid = box ; // P = [ip+np/3,ip+2*np/3)
BoxType dbox_upp = box ; // P = [ip+2*np/3,ip+np)
dbox_low[ axis ][1] = box[ axis ][0] + nbox_low ;
dbox_mid[ axis ][1] = box[ axis ][0] + nbox_mid ;
dbox_mid[ axis ][0] = dbox_low[ axis ][1];
dbox_upp[ axis ][0] = dbox_mid[ axis ][1];
box_partition( ip, ip + np_part, dbox_low , p_box );
box_partition( ip+ np_part, ip + 2*np_part, dbox_mid , p_box );
box_partition( ip+2*np_part, up, dbox_upp , p_box );
}
else {
const size_t np_low = np / 2 ; /* Rounded down */
const size_t nbox_low = (size_t)
(((double)n) * ( ((double) np_low ) / ((double) np ) ));
BoxType dbox_low = box ;
BoxType dbox_upp = box ;
dbox_low[ axis ][1] = dbox_low[ axis ][0] + nbox_low ;
dbox_upp[ axis ][0] = dbox_low[ axis ][1];
box_partition( ip, ip + np_low, dbox_low , p_box );
box_partition( ip + np_low, up, dbox_upp , p_box );
}
}
}
size_t box_map_offset( const BoxType & local_use ,
const size_t global_i ,
const size_t global_j ,
const size_t global_k )
{
const size_t max = std::numeric_limits<size_t>::max();
const size_t n[3] =
{ local_use[0][1] - local_use[0][0] ,
local_use[1][1] - local_use[1][0] ,
local_use[2][1] - local_use[2][0] };
const size_t use[3] = {
( global_i >= local_use[0][0] ? global_i - local_use[0][0] : max ) ,
( global_j >= local_use[1][0] ? global_j - local_use[1][0] : max ) ,
( global_k >= local_use[2][0] ? global_k - local_use[2][0] : max ) };
const size_t offset =
( use[0] < n[0] && use[1] < n[1] && use[2] < n[2] ) ?
( use[0] + n[0] * ( use[1] + n[1] * use[2] ) ) : max ;
if ( offset == max ) {
std::ostringstream msg ;
msg << "box_map_offset ERROR: "
<< " use " << local_use
<< " ( " << global_i
<< " , " << global_j
<< " , " << global_k
<< " )" ;
throw std::runtime_error( msg.str() );
}
return offset ;
}
} // namespace
//----------------------------------------------------------------------------
void BoxBoundsLinear::apply( const BoxType & box_global ,
const BoxType & box_part ,
BoxType & box_interior ,
BoxType & box_use ) const
{
const unsigned ghost = 1 ;
if ( 0 == count( box_part ) ) {
box_interior = box_part ;
box_use = box_part ;
}
else {
for ( size_t i = 0 ; i < 3 ; ++i ) {
box_interior[i][0] =
( box_part[i][0] == box_global[i][0] ) ? box_part[i][0] : (
( box_part[i][0] + ghost < box_part[i][1] ) ? box_part[i][0] + ghost :
box_part[i][1] );
box_interior[i][1] =
( box_part[i][1] == box_global[i][1] ) ? box_part[i][1] : (
( box_part[i][0] + ghost < box_part[i][1] ) ? box_part[i][1] - ghost :
box_part[i][0] );
box_use[i][0] =
( box_part[i][0] > ghost + box_global[i][0] ) ? box_part[i][0] - ghost :
box_global[i][0] ;
box_use[i][1] =
( box_part[i][1] + ghost < box_global[i][1] ) ? box_part[i][1] + ghost :
box_global[i][1] ;
}
}
}
void BoxBoundsQuadratic::apply( const BoxType & box_global ,
const BoxType & box_part ,
BoxType & box_interior ,
BoxType & box_use ) const
{
if ( 0 == count( box_part ) ) {
box_interior = box_part ;
box_use = box_part ;
}
else {
for ( size_t i = 0 ; i < 3 ; ++i ) {
const bool odd = ( box_part[i][0] - box_global[i][0] ) & 01 ;
const unsigned ghost = odd ? 1 : 2 ;
box_interior[i][0] =
( box_part[i][0] == box_global[i][0] ) ? box_part[i][0] : (
( box_part[i][0] + ghost < box_part[i][1] ) ? box_part[i][0] + ghost :
box_part[i][1] );
box_interior[i][1] =
( box_part[i][1] == box_global[i][1] ) ? box_part[i][1] : (
( box_part[i][0] + ghost < box_part[i][1] ) ? box_part[i][1] - ghost :
box_part[i][0] );
box_use[i][0] =
( box_part[i][0] > ghost + box_global[i][0] ) ? box_part[i][0] - ghost :
box_global[i][0] ;
box_use[i][1] =
( box_part[i][1] + ghost < box_global[i][1] ) ? box_part[i][1] + ghost :
box_global[i][1] ;
}
}
}
//----------------------------------------------------------------------------
void box_partition_rcb( const BoxType & root_box ,
std::vector<BoxType> & part_boxes )
{
const BoxBoundsLinear use_boxes ;
const size_t part_count = part_boxes.size();
box_partition( 0 , part_count , root_box , & part_boxes[0] );
// Verify partitioning
size_t total_cell = 0 ;
for ( size_t i = 0 ; i < part_count ; ++i ) {
total_cell += count( part_boxes[i] );
BoxType box_interior , box_use ;
use_boxes.apply( root_box , part_boxes[i] , box_interior , box_use );
if ( count( box_use ) < count( part_boxes[i] ) ||
count( part_boxes[i] ) < count( box_interior ) ||
part_boxes[i] != intersect( part_boxes[i] , box_use ) ||
box_interior != intersect( part_boxes[i] , box_interior )) {
std::ostringstream msg ;
msg << "box_partition_rcb ERROR : "
<< "part_boxes[" << i << "] = "
<< part_boxes[i]
<< " use " << box_use
<< " interior " << box_interior
<< std::endl
<< " part ^ use " << intersect( part_boxes[i] , box_use )
<< " part ^ interior " << intersect( part_boxes[i] , box_interior );
throw std::runtime_error( msg.str() );
}
for ( size_t j = i + 1 ; j < part_count ; ++j ) {
const BoxType tmp = intersect( part_boxes[i] , part_boxes[j] );
if ( count( tmp ) ) {
throw std::runtime_error( std::string("box partition intersection") );
}
}
}
if ( total_cell != count( root_box ) ) {
throw std::runtime_error( std::string("box partition count") );
}
}
//----------------------------------------------------------------------------
size_t box_map_id( const BoxType & local_use ,
const std::vector<size_t> & local_use_id_map ,
const size_t global_i ,
const size_t global_j ,
const size_t global_k )
{
const size_t offset =
box_map_offset( local_use , global_i , global_j , global_k );
return local_use_id_map[ offset ];
}
//----------------------------------------------------------------------------
void box_partition_maps( const BoxType & root_box ,
const std::vector<BoxType> & part_boxes ,
const BoxBounds & use_boxes ,
const size_t my_part ,
BoxType & my_use_box ,
std::vector<size_t> & my_use_id_map ,
size_t & my_count_interior ,
size_t & my_count_owned ,
size_t & my_count_uses ,
std::vector<size_t> & my_part_counts ,
std::vector<std::vector<size_t> > & my_send_map )
{
const size_t np = part_boxes.size();
if ( np <= my_part ) {
std::ostringstream msg ;
msg << "box_partition_maps ERROR : "
<< " np(" << np << ") <= my_part(" << my_part << ")" ;
throw std::runtime_error( msg.str() );
}
const BoxType my_owned_box = part_boxes[my_part];
BoxType my_interior_box ;
use_boxes.apply( root_box, my_owned_box, my_interior_box, my_use_box );
my_count_interior = count( my_interior_box );
my_count_owned = count( my_owned_box );
my_count_uses = count( my_use_box );
my_use_id_map.assign( my_count_uses , std::numeric_limits<size_t>::max() );
// Order ids as { owned-interior , owned-parallel , received_{(p+i)%np} }
size_t offset_interior = 0 ;
size_t offset_parallel = my_count_interior ;
for ( size_t iz = my_owned_box[2][0] ; iz < my_owned_box[2][1] ; ++iz ) {
for ( size_t iy = my_owned_box[1][0] ; iy < my_owned_box[1][1] ; ++iy ) {
for ( size_t ix = my_owned_box[0][0] ; ix < my_owned_box[0][1] ; ++ix ) {
const size_t offset = box_map_offset( my_use_box , ix , iy , iz );
if ( contain( my_interior_box , ix , iy , iz ) ) {
my_use_id_map[ offset ] = offset_interior++ ;
}
else {
my_use_id_map[ offset ] = offset_parallel++ ;
}
}}}
my_part_counts.assign( np , (size_t) 0 );
my_send_map.assign( np , std::vector<size_t>() );
my_part_counts[0] = my_count_owned ;
for ( size_t i = 1 ; i < np ; ++i ) {
const size_t ip = ( my_part + i ) % np ;
const BoxType p_owned_box = part_boxes[ip];
BoxType p_use_box , p_interior_box ;
use_boxes.apply( root_box, p_owned_box, p_interior_box, p_use_box );
const BoxType recv_box = intersect( my_use_box , p_owned_box );
const BoxType send_box = intersect( my_owned_box , p_use_box );
if ( 0 != ( my_part_counts[i] = count( recv_box ) ) ) {
for ( size_t iz = recv_box[2][0] ; iz < recv_box[2][1] ; ++iz ) {
for ( size_t iy = recv_box[1][0] ; iy < recv_box[1][1] ; ++iy ) {
for ( size_t ix = recv_box[0][0] ; ix < recv_box[0][1] ; ++ix ) {
const size_t offset = box_map_offset( my_use_box , ix , iy , iz );
my_use_id_map[ offset ] = offset_parallel++ ;
}}}
}
if ( 0 != count( send_box ) ) {
for ( size_t iz = send_box[2][0] ; iz < send_box[2][1] ; ++iz ) {
for ( size_t iy = send_box[1][0] ; iy < send_box[1][1] ; ++iy ) {
for ( size_t ix = send_box[0][0] ; ix < send_box[0][1] ; ++ix ) {
const size_t offset = box_map_offset( my_use_box , ix , iy , iz );
my_send_map[ i ].push_back( my_use_id_map[ offset ] );
}}}
}
}
}
Event Timeline
Log In to Comment