Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90977985
dgeqrf.f
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 14:30
Size
7 KB
Mime Type
text/html
Expires
Fri, Nov 8, 14:30 (2 d)
Engine
blob
Format
Raw Data
Handle
22156983
Attached To
rLAMMPS lammps
dgeqrf.f
View Options
*>
\
brief
\
b
DGEQRF
*
*
===========
DOCUMENTATION
===========
*
*
Online
html
documentation
available
at
*
http
:
//
www
.
netlib
.
org
/
lapack
/
explore
-
html
/
*
*>
\
htmlonly
*>
Download
DGEQRF
+
dependencies
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrf.f"
>
*>
[
TGZ
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrf.f"
>
*>
[
ZIP
]
</
a
>
*>
<
a
href
=
"http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrf.f"
>
*>
[
TXT
]
</
a
>
*>
\
endhtmlonly
*
*
Definition
:
*
===========
*
*
SUBROUTINE
DGEQRF
(
M
,
N
,
A
,
LDA
,
TAU
,
WORK
,
LWORK
,
INFO
)
*
*
..
Scalar
Arguments
..
*
INTEGER
INFO
,
LDA
,
LWORK
,
M
,
N
*
..
*
..
Array
Arguments
..
*
DOUBLE PRECISION
A
(
LDA
,
*
),
TAU
(
*
),
WORK
(
*
)
*
..
*
*
*>
\
par
Purpose
:
*
=============
*>
*>
\
verbatim
*>
*>
DGEQRF
computes
a
QR
factorization
of
a
real
M
-
by
-
N
matrix
A
:
*>
A
=
Q
*
R
.
*>
\
endverbatim
*
*
Arguments
:
*
==========
*
*>
\
param
[
in
]
M
*>
\
verbatim
*>
M
is
INTEGER
*>
The
number
of
rows
of
the
matrix
A
.
M
>=
0.
*>
\
endverbatim
*>
*>
\
param
[
in
]
N
*>
\
verbatim
*>
N
is
INTEGER
*>
The
number
of
columns
of
the
matrix
A
.
N
>=
0.
*>
\
endverbatim
*>
*>
\
param
[
in
,
out
]
A
*>
\
verbatim
*>
A
is
DOUBLE PRECISION
array
,
dimension
(
LDA
,
N
)
*>
On
entry
,
the
M
-
by
-
N
matrix
A
.
*>
On
exit
,
the
elements
on
and
above
the
diagonal
of
the
array
*>
contain
the
min
(
M
,
N
)
-
by
-
N
upper
trapezoidal
matrix
R
(
R
is
*>
upper
triangular
if
m
>=
n
);
the
elements
below
the
diagonal
,
*>
with
the
array
TAU
,
represent
the
orthogonal
matrix
Q
as
a
*>
product
of
min
(
m
,
n
)
elementary
reflectors
(
see
Further
*>
Details
)
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
LDA
*>
\
verbatim
*>
LDA
is
INTEGER
*>
The
leading
dimension
of
the
array
A
.
LDA
>=
max
(
1
,
M
)
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
TAU
*>
\
verbatim
*>
TAU
is
DOUBLE PRECISION
array
,
dimension
(
min
(
M
,
N
))
*>
The
scalar
factors
of
the
elementary
reflectors
(
see
Further
*>
Details
)
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
WORK
*>
\
verbatim
*>
WORK
is
DOUBLE PRECISION
array
,
dimension
(
MAX
(
1
,
LWORK
))
*>
On
exit
,
if
INFO
=
0
,
WORK
(
1
)
returns
the
optimal
LWORK
.
*>
\
endverbatim
*>
*>
\
param
[
in
]
LWORK
*>
\
verbatim
*>
LWORK
is
INTEGER
*>
The
dimension
of
the
array
WORK
.
LWORK
>=
max
(
1
,
N
)
.
*>
For
optimum
performance
LWORK
>=
N
*
NB
,
where
NB
is
*>
the
optimal
blocksize
.
*>
*>
If
LWORK
=
-
1
,
then
a
workspace
query
is
assumed
;
the
routine
*>
only
calculates
the
optimal
size
of
the
WORK
array
,
returns
*>
this
value
as
the
first
entry
of
the
WORK
array
,
and
no
error
*>
message
related
to
LWORK
is
issued
by
XERBLA
.
*>
\
endverbatim
*>
*>
\
param
[
out
]
INFO
*>
\
verbatim
*>
INFO
is
INTEGER
*>
=
0
:
successful
exit
*>
<
0
:
if
INFO
=
-
i
,
the
i
-
th
argument
had
an
illegal
value
*>
\
endverbatim
*
*
Authors
:
*
========
*
*>
\
author
Univ
.
of
Tennessee
*>
\
author
Univ
.
of
California
Berkeley
*>
\
author
Univ
.
of
Colorado
Denver
*>
\
author
NAG
Ltd
.
*
*>
\
date
November
2011
*
*>
\
ingroup
doubleGEcomputational
*
*>
\
par
Further
Details
:
*
=====================
*>
*>
\
verbatim
*>
*>
The
matrix
Q
is
represented
as
a
product
of
elementary
reflectors
*>
*>
Q
=
H
(
1
)
H
(
2
)
.
.
.
H
(
k
),
where
k
=
min
(
m
,
n
)
.
*>
*>
Each
H
(
i
)
has
the
form
*>
*>
H
(
i
)
=
I
-
tau
*
v
*
v
**
T
*>
*>
where
tau
is
a
real
scalar
,
and
v
is
a
real
vector
with
*>
v
(
1
:
i
-
1
)
=
0
and
v
(
i
)
=
1
;
v
(
i
+
1
:
m
)
is
stored
on
exit
in
A
(
i
+
1
:
m
,
i
),
*>
and
tau
in
TAU
(
i
)
.
*>
\
endverbatim
*>
*
=====================================================================
SUBROUTINE
DGEQRF
(
M
,
N
,
A
,
LDA
,
TAU
,
WORK
,
LWORK
,
INFO
)
*
*
--
LAPACK
computational
routine
(
version
3.4.0
)
--
*
--
LAPACK
is
a
software
package
provided
by
Univ
.
of
Tennessee
,
--
*
--
Univ
.
of
California
Berkeley
,
Univ
.
of
Colorado
Denver
and
NAG
Ltd
..
--
*
November
2011
*
*
..
Scalar
Arguments
..
INTEGER
INFO
,
LDA
,
LWORK
,
M
,
N
*
..
*
..
Array
Arguments
..
DOUBLE PRECISION
A
(
LDA
,
*
),
TAU
(
*
),
WORK
(
*
)
*
..
*
*
=====================================================================
*
*
..
Local
Scalars
..
LOGICAL
LQUERY
INTEGER
I
,
IB
,
IINFO
,
IWS
,
K
,
LDWORK
,
LWKOPT
,
NB
,
$
NBMIN
,
NX
*
..
*
..
External
Subroutines
..
EXTERNAL
DGEQR2
,
DLARFB
,
DLARFT
,
XERBLA
*
..
*
..
Intrinsic
Functions
..
INTRINSIC
MAX
,
MIN
*
..
*
..
External
Functions
..
INTEGER
ILAENV
EXTERNAL
ILAENV
*
..
*
..
Executable
Statements
..
*
*
Test
the
input
arguments
*
INFO
=
0
NB
=
ILAENV
(
1
,
'DGEQRF'
,
' '
,
M
,
N
,
-
1
,
-
1
)
LWKOPT
=
N
*
NB
WORK
(
1
)
=
LWKOPT
LQUERY
=
(
LWORK
.EQ.
-
1
)
IF
(
M
.LT.
0
)
THEN
INFO
=
-
1
ELSE IF
(
N
.LT.
0
)
THEN
INFO
=
-
2
ELSE IF
(
LDA
.LT.
MAX
(
1
,
M
)
)
THEN
INFO
=
-
4
ELSE IF
(
LWORK
.LT.
MAX
(
1
,
N
)
.AND.
.NOT.
LQUERY
)
THEN
INFO
=
-
7
END IF
IF
(
INFO
.NE.
0
)
THEN
CALL
XERBLA
(
'DGEQRF'
,
-
INFO
)
RETURN
ELSE IF
(
LQUERY
)
THEN
RETURN
END IF
*
*
Quick
return if
possible
*
K
=
MIN
(
M
,
N
)
IF
(
K
.EQ.
0
)
THEN
WORK
(
1
)
=
1
RETURN
END IF
*
NBMIN
=
2
NX
=
0
IWS
=
N
IF
(
NB
.GT.
1
.AND.
NB
.LT.
K
)
THEN
*
*
Determine
when
to
cross
over
from
blocked
to
unblocked
code
.
*
NX
=
MAX
(
0
,
ILAENV
(
3
,
'DGEQRF'
,
' '
,
M
,
N
,
-
1
,
-
1
)
)
IF
(
NX
.LT.
K
)
THEN
*
*
Determine
if
workspace
is
large
enough
for
blocked
code
.
*
LDWORK
=
N
IWS
=
LDWORK
*
NB
IF
(
LWORK
.LT.
IWS
)
THEN
*
*
Not
enough
workspace
to
use
optimal
NB
:
reduce
NB
and
*
determine
the
minimum
value
of
NB
.
*
NB
=
LWORK
/
LDWORK
NBMIN
=
MAX
(
2
,
ILAENV
(
2
,
'DGEQRF'
,
' '
,
M
,
N
,
-
1
,
$
-
1
)
)
END IF
END IF
END IF
*
IF
(
NB
.GE.
NBMIN
.AND.
NB
.LT.
K
.AND.
NX
.LT.
K
)
THEN
*
*
Use
blocked
code
initially
*
DO
10
I
=
1
,
K
-
NX
,
NB
IB
=
MIN
(
K
-
I
+
1
,
NB
)
*
*
Compute
the
QR
factorization
of
the
current
block
*
A
(
i
:
m
,
i
:
i
+
ib
-
1
)
*
CALL
DGEQR2
(
M
-
I
+
1
,
IB
,
A
(
I
,
I
),
LDA
,
TAU
(
I
),
WORK
,
$
IINFO
)
IF
(
I
+
IB
.LE.
N
)
THEN
*
*
Form
the
triangular
factor
of
the
block
reflector
*
H
=
H
(
i
)
H
(
i
+
1
)
.
.
.
H
(
i
+
ib
-
1
)
*
CALL
DLARFT
(
'Forward'
,
'Columnwise'
,
M
-
I
+
1
,
IB
,
$
A
(
I
,
I
),
LDA
,
TAU
(
I
),
WORK
,
LDWORK
)
*
*
Apply
H
**
T
to
A
(
i
:
m
,
i
+
ib
:
n
)
from
the
left
*
CALL
DLARFB
(
'Left'
,
'Transpose'
,
'Forward'
,
$
'Columnwise'
,
M
-
I
+
1
,
N
-
I
-
IB
+
1
,
IB
,
$
A
(
I
,
I
),
LDA
,
WORK
,
LDWORK
,
A
(
I
,
I
+
IB
),
$
LDA
,
WORK
(
IB
+
1
),
LDWORK
)
END IF
10
CONTINUE
ELSE
I
=
1
END IF
*
*
Use
unblocked
code
to
factor
the
last
or
only
block
.
*
IF
(
I
.LE.
K
)
$
CALL
DGEQR2
(
M
-
I
+
1
,
N
-
I
+
1
,
A
(
I
,
I
),
LDA
,
TAU
(
I
),
WORK
,
$
IINFO
)
*
WORK
(
1
)
=
IWS
RETURN
*
*
End
of
DGEQRF
*
END
Event Timeline
Log In to Comment