Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F96560679
Hyperplane.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Dec 28, 03:11
Size
11 KB
Mime Type
text/x-c++
Expires
Mon, Dec 30, 03:11 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
23206325
Attached To
rLAMMPS lammps
Hyperplane.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_HYPERPLANE_H
#define EIGEN_HYPERPLANE_H
namespace Eigen {
/** \geometry_module \ingroup Geometry_Module
*
* \class Hyperplane
*
* \brief A hyperplane
*
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
*
* \param _Scalar the scalar type, i.e., the type of the coefficients
* \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
* Notice that the dimension of the hyperplane is _AmbientDim-1.
*
* This class represents an hyperplane as the zero set of the implicit equation
* \f$ n \cdot x + d = 0 \f$ where \f$ n \f$ is a unit normal vector of the plane (linear part)
* and \f$ d \f$ is the distance (offset) to the origin.
*/
template <typename _Scalar, int _AmbientDim, int _Options>
class Hyperplane
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim==Dynamic ? Dynamic : _AmbientDim+1)
enum {
AmbientDimAtCompileTime = _AmbientDim,
Options = _Options
};
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef DenseIndex Index;
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
? Dynamic
: Index(AmbientDimAtCompileTime)+1,1,Options> Coefficients;
typedef Block<Coefficients,AmbientDimAtCompileTime,1> NormalReturnType;
typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;
/** Default constructor without initialization */
inline Hyperplane() {}
template<int OtherOptions>
Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
: m_coeffs(other.coeffs())
{}
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
* of the ambient space */
inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
/** Construct a plane from its normal \a n and a point \a e onto the plane.
* \warning the vector normal is assumed to be normalized.
*/
inline Hyperplane(const VectorType& n, const VectorType& e)
: m_coeffs(n.size()+1)
{
normal() = n;
offset() = -n.dot(e);
}
/** Constructs a plane from its normal \a n and distance to the origin \a d
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
* \warning the vector normal is assumed to be normalized.
*/
inline Hyperplane(const VectorType& n, const Scalar& d)
: m_coeffs(n.size()+1)
{
normal() = n;
offset() = d;
}
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
*/
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
{
Hyperplane result(p0.size());
result.normal() = (p1 - p0).unitOrthogonal();
result.offset() = -p0.dot(result.normal());
return result;
}
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
* is required to be exactly 3.
*/
static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
Hyperplane result(p0.size());
VectorType v0(p2 - p0), v1(p1 - p0);
result.normal() = v0.cross(v1);
RealScalar norm = result.normal().norm();
if(norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon())
{
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
result.normal() = svd.matrixV().col(2);
}
else
result.normal() /= norm;
result.offset() = -p0.dot(result.normal());
return result;
}
/** Constructs a hyperplane passing through the parametrized line \a parametrized.
* If the dimension of the ambient space is greater than 2, then there isn't uniqueness,
* so an arbitrary choice is made.
*/
// FIXME to be consitent with the rest this could be implemented as a static Through function ??
explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
{
normal() = parametrized.direction().unitOrthogonal();
offset() = -parametrized.origin().dot(normal());
}
~Hyperplane() {}
/** \returns the dimension in which the plane holds */
inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
/** normalizes \c *this */
void normalize(void)
{
m_coeffs /= normal().norm();
}
/** \returns the signed distance between the plane \c *this and a point \a p.
* \sa absDistance()
*/
inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
/** \returns the absolute distance between the plane \c *this and a point \a p.
* \sa signedDistance()
*/
inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); }
/** \returns the projection of a point \a p onto the plane \c *this.
*/
inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
* \warning the vector normal is assumed to be normalized.
*/
inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
* of the implicit equation */
inline Scalar& offset() { return m_coeffs(dim()); }
/** \returns a constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
inline const Coefficients& coeffs() const { return m_coeffs; }
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
inline Coefficients& coeffs() { return m_coeffs; }
/** \returns the intersection of *this with \a other.
*
* \warning The ambient space must be a plane, i.e. have dimension 2, so that \c *this and \a other are lines.
*
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
*/
VectorType intersection(const Hyperplane& other) const
{
using std::abs;
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
// whether the two lines are approximately parallel.
if(internal::isMuchSmallerThan(det, Scalar(1)))
{ // special case where the two lines are approximately parallel. Pick any point on the first line.
if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0)))
return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
else
return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
}
else
{ // general case
Scalar invdet = Scalar(1) / det;
return VectorType(invdet*(coeffs().coeff(1)*other.coeffs().coeff(2)-other.coeffs().coeff(1)*coeffs().coeff(2)),
invdet*(other.coeffs().coeff(0)*coeffs().coeff(2)-coeffs().coeff(0)*other.coeffs().coeff(2)));
}
}
/** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
*
* \param mat the Dim x Dim transformation matrix
* \param traits specifies whether the matrix \a mat represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
*/
template<typename XprType>
inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
{
if (traits==Affine)
normal() = mat.inverse().transpose() * normal();
else if (traits==Isometry)
normal() = mat * normal();
else
{
eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
}
return *this;
}
/** Applies the transformation \a t to \c *this and returns a reference to \c *this.
*
* \param t the transformation of dimension Dim
* \param traits specifies whether the transformation \a t represents an #Isometry
* or a more generic #Affine transformation. The default is #Affine.
* Other kind of transformations are not supported.
*/
template<int TrOptions>
inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
TransformTraits traits = Affine)
{
transform(t.linear(), traits);
offset() -= normal().dot(t.translation());
return *this;
}
/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
inline typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
{
return typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type(*this);
}
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType,int OtherOptions>
inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
template<int OtherOptions>
bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
protected:
Coefficients m_coeffs;
};
} // end namespace Eigen
#endif // EIGEN_HYPERPLANE_H
Event Timeline
Log In to Comment