Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92145078
FullPivHouseholderQR.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 17, 18:32
Size
22 KB
Mime Type
text/x-c
Expires
Tue, Nov 19, 18:32 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22382952
Attached To
rLAMMPS lammps
FullPivHouseholderQR.h
View Options
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
namespace Eigen {
namespace internal {
template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
template<typename MatrixType>
struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
{
typedef typename MatrixType::PlainObject ReturnType;
};
}
/** \ingroup QR_Module
*
* \class FullPivHouseholderQR
*
* \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
*
* \param MatrixType the type of the matrix of which we are computing the QR decomposition
*
* This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
* such that
* \f[
* \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
* \f]
* by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
* upper triangular matrix.
*
* This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
* numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
*
* \sa MatrixBase::fullPivHouseholderQr()
*/
template<typename _MatrixType> class FullPivHouseholderQR
{
public:
typedef _MatrixType MatrixType;
enum {
RowsAtCompileTime = MatrixType::RowsAtCompileTime,
ColsAtCompileTime = MatrixType::ColsAtCompileTime,
Options = MatrixType::Options,
MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
};
typedef typename MatrixType::Scalar Scalar;
typedef typename MatrixType::RealScalar RealScalar;
typedef typename MatrixType::Index Index;
typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
typedef Matrix<Index, 1,
EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
/** \brief Default Constructor.
*
* The default constructor is useful in cases in which the user intends to
* perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
*/
FullPivHouseholderQR()
: m_qr(),
m_hCoeffs(),
m_rows_transpositions(),
m_cols_transpositions(),
m_cols_permutation(),
m_temp(),
m_isInitialized(false),
m_usePrescribedThreshold(false) {}
/** \brief Default Constructor with memory preallocation
*
* Like the default constructor but with preallocation of the internal data
* according to the specified problem \a size.
* \sa FullPivHouseholderQR()
*/
FullPivHouseholderQR(Index rows, Index cols)
: m_qr(rows, cols),
m_hCoeffs((std::min)(rows,cols)),
m_rows_transpositions((std::min)(rows,cols)),
m_cols_transpositions((std::min)(rows,cols)),
m_cols_permutation(cols),
m_temp(cols),
m_isInitialized(false),
m_usePrescribedThreshold(false) {}
/** \brief Constructs a QR factorization from a given matrix
*
* This constructor computes the QR factorization of the matrix \a matrix by calling
* the method compute(). It is a short cut for:
*
* \code
* FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
* qr.compute(matrix);
* \endcode
*
* \sa compute()
*/
FullPivHouseholderQR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
m_cols_permutation(matrix.cols()),
m_temp(matrix.cols()),
m_isInitialized(false),
m_usePrescribedThreshold(false)
{
compute(matrix);
}
/** This method finds a solution x to the equation Ax=b, where A is the matrix of which
* \c *this is the QR decomposition.
*
* \param b the right-hand-side of the equation to solve.
*
* \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
* and an arbitrary solution otherwise.
*
* \note The case where b is a matrix is not yet implemented. Also, this
* code is space inefficient.
*
* \note_about_checking_solutions
*
* \note_about_arbitrary_choice_of_solution
*
* Example: \include FullPivHouseholderQR_solve.cpp
* Output: \verbinclude FullPivHouseholderQR_solve.out
*/
template<typename Rhs>
inline const internal::solve_retval<FullPivHouseholderQR, Rhs>
solve(const MatrixBase<Rhs>& b) const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return internal::solve_retval<FullPivHouseholderQR, Rhs>(*this, b.derived());
}
/** \returns Expression object representing the matrix Q
*/
MatrixQReturnType matrixQ(void) const;
/** \returns a reference to the matrix where the Householder QR decomposition is stored
*/
const MatrixType& matrixQR() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_qr;
}
FullPivHouseholderQR& compute(const MatrixType& matrix);
/** \returns a const reference to the column permutation matrix */
const PermutationType& colsPermutation() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_cols_permutation;
}
/** \returns a const reference to the vector of indices representing the rows transpositions */
const IntDiagSizeVectorType& rowsTranspositions() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return m_rows_transpositions;
}
/** \returns the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \warning a determinant can be very big or small, so for matrices
* of large enough dimension, there is a risk of overflow/underflow.
* One way to work around that is to use logAbsDeterminant() instead.
*
* \sa logAbsDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar absDeterminant() const;
/** \returns the natural log of the absolute value of the determinant of the matrix of which
* *this is the QR decomposition. It has only linear complexity
* (that is, O(n) where n is the dimension of the square matrix)
* as the QR decomposition has already been computed.
*
* \note This is only for square matrices.
*
* \note This method is useful to work around the risk of overflow/underflow that's inherent
* to determinant computation.
*
* \sa absDeterminant(), MatrixBase::determinant()
*/
typename MatrixType::RealScalar logAbsDeterminant() const;
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline Index rank() const
{
using std::abs;
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
Index result = 0;
for(Index i = 0; i < m_nonzero_pivots; ++i)
result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
return result;
}
/** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline Index dimensionOfKernel() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return cols() - rank();
}
/** \returns true if the matrix of which *this is the QR decomposition represents an injective
* linear map, i.e. has trivial kernel; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isInjective() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return rank() == cols();
}
/** \returns true if the matrix of which *this is the QR decomposition represents a surjective
* linear map; false otherwise.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isSurjective() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return rank() == rows();
}
/** \returns true if the matrix of which *this is the QR decomposition is invertible.
*
* \note This method has to determine which pivots should be considered nonzero.
* For that, it uses the threshold value that you can control by calling
* setThreshold(const RealScalar&).
*/
inline bool isInvertible() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return isInjective() && isSurjective();
}
/** \returns the inverse of the matrix of which *this is the QR decomposition.
*
* \note If this matrix is not invertible, the returned matrix has undefined coefficients.
* Use isInvertible() to first determine whether this matrix is invertible.
*/ inline const
internal::solve_retval<FullPivHouseholderQR, typename MatrixType::IdentityReturnType>
inverse() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return internal::solve_retval<FullPivHouseholderQR,typename MatrixType::IdentityReturnType>
(*this, MatrixType::Identity(m_qr.rows(), m_qr.cols()));
}
inline Index rows() const { return m_qr.rows(); }
inline Index cols() const { return m_qr.cols(); }
/** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
*
* For advanced uses only.
*/
const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
/** Allows to prescribe a threshold to be used by certain methods, such as rank(),
* who need to determine when pivots are to be considered nonzero. This is not used for the
* QR decomposition itself.
*
* When it needs to get the threshold value, Eigen calls threshold(). By default, this
* uses a formula to automatically determine a reasonable threshold.
* Once you have called the present method setThreshold(const RealScalar&),
* your value is used instead.
*
* \param threshold The new value to use as the threshold.
*
* A pivot will be considered nonzero if its absolute value is strictly greater than
* \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
* where maxpivot is the biggest pivot.
*
* If you want to come back to the default behavior, call setThreshold(Default_t)
*/
FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
{
m_usePrescribedThreshold = true;
m_prescribedThreshold = threshold;
return *this;
}
/** Allows to come back to the default behavior, letting Eigen use its default formula for
* determining the threshold.
*
* You should pass the special object Eigen::Default as parameter here.
* \code qr.setThreshold(Eigen::Default); \endcode
*
* See the documentation of setThreshold(const RealScalar&).
*/
FullPivHouseholderQR& setThreshold(Default_t)
{
m_usePrescribedThreshold = false;
return *this;
}
/** Returns the threshold that will be used by certain methods such as rank().
*
* See the documentation of setThreshold(const RealScalar&).
*/
RealScalar threshold() const
{
eigen_assert(m_isInitialized || m_usePrescribedThreshold);
return m_usePrescribedThreshold ? m_prescribedThreshold
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
// and turns out to be identical to Higham's formula used already in LDLt.
: NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
}
/** \returns the number of nonzero pivots in the QR decomposition.
* Here nonzero is meant in the exact sense, not in a fuzzy sense.
* So that notion isn't really intrinsically interesting, but it is
* still useful when implementing algorithms.
*
* \sa rank()
*/
inline Index nonzeroPivots() const
{
eigen_assert(m_isInitialized && "LU is not initialized.");
return m_nonzero_pivots;
}
/** \returns the absolute value of the biggest pivot, i.e. the biggest
* diagonal coefficient of U.
*/
RealScalar maxPivot() const { return m_maxpivot; }
protected:
static void check_template_parameters()
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
}
MatrixType m_qr;
HCoeffsType m_hCoeffs;
IntDiagSizeVectorType m_rows_transpositions;
IntDiagSizeVectorType m_cols_transpositions;
PermutationType m_cols_permutation;
RowVectorType m_temp;
bool m_isInitialized, m_usePrescribedThreshold;
RealScalar m_prescribedThreshold, m_maxpivot;
Index m_nonzero_pivots;
RealScalar m_precision;
Index m_det_pq;
};
template<typename MatrixType>
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
{
using std::abs;
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return abs(m_qr.diagonal().prod());
}
template<typename MatrixType>
typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
return m_qr.diagonal().cwiseAbs().array().log().sum();
}
/** Performs the QR factorization of the given matrix \a matrix. The result of
* the factorization is stored into \c *this, and a reference to \c *this
* is returned.
*
* \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
*/
template<typename MatrixType>
FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const MatrixType& matrix)
{
check_template_parameters();
using std::abs;
Index rows = matrix.rows();
Index cols = matrix.cols();
Index size = (std::min)(rows,cols);
m_qr = matrix;
m_hCoeffs.resize(size);
m_temp.resize(cols);
m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
m_rows_transpositions.resize(size);
m_cols_transpositions.resize(size);
Index number_of_transpositions = 0;
RealScalar biggest(0);
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
m_maxpivot = RealScalar(0);
for (Index k = 0; k < size; ++k)
{
Index row_of_biggest_in_corner, col_of_biggest_in_corner;
RealScalar biggest_in_corner;
biggest_in_corner = m_qr.bottomRightCorner(rows-k, cols-k)
.cwiseAbs()
.maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
row_of_biggest_in_corner += k;
col_of_biggest_in_corner += k;
if(k==0) biggest = biggest_in_corner;
// if the corner is negligible, then we have less than full rank, and we can finish early
if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
{
m_nonzero_pivots = k;
for(Index i = k; i < size; i++)
{
m_rows_transpositions.coeffRef(i) = i;
m_cols_transpositions.coeffRef(i) = i;
m_hCoeffs.coeffRef(i) = Scalar(0);
}
break;
}
m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
if(k != row_of_biggest_in_corner) {
m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
++number_of_transpositions;
}
if(k != col_of_biggest_in_corner) {
m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
++number_of_transpositions;
}
RealScalar beta;
m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
m_qr.coeffRef(k,k) = beta;
// remember the maximum absolute value of diagonal coefficients
if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
m_qr.bottomRightCorner(rows-k, cols-k-1)
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
}
m_cols_permutation.setIdentity(cols);
for(Index k = 0; k < size; ++k)
m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
m_det_pq = (number_of_transpositions%2) ? -1 : 1;
m_isInitialized = true;
return *this;
}
namespace internal {
template<typename _MatrixType, typename Rhs>
struct solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
: solve_retval_base<FullPivHouseholderQR<_MatrixType>, Rhs>
{
EIGEN_MAKE_SOLVE_HELPERS(FullPivHouseholderQR<_MatrixType>,Rhs)
template<typename Dest> void evalTo(Dest& dst) const
{
const Index rows = dec().rows(), cols = dec().cols();
eigen_assert(rhs().rows() == rows);
// FIXME introduce nonzeroPivots() and use it here. and more generally,
// make the same improvements in this dec as in FullPivLU.
if(dec().rank()==0)
{
dst.setZero();
return;
}
typename Rhs::PlainObject c(rhs());
Matrix<Scalar,1,Rhs::ColsAtCompileTime> temp(rhs().cols());
for (Index k = 0; k < dec().rank(); ++k)
{
Index remainingSize = rows-k;
c.row(k).swap(c.row(dec().rowsTranspositions().coeff(k)));
c.bottomRightCorner(remainingSize, rhs().cols())
.applyHouseholderOnTheLeft(dec().matrixQR().col(k).tail(remainingSize-1),
dec().hCoeffs().coeff(k), &temp.coeffRef(0));
}
dec().matrixQR()
.topLeftCorner(dec().rank(), dec().rank())
.template triangularView<Upper>()
.solveInPlace(c.topRows(dec().rank()));
for(Index i = 0; i < dec().rank(); ++i) dst.row(dec().colsPermutation().indices().coeff(i)) = c.row(i);
for(Index i = dec().rank(); i < cols; ++i) dst.row(dec().colsPermutation().indices().coeff(i)).setZero();
}
};
/** \ingroup QR_Module
*
* \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
*
* \tparam MatrixType type of underlying dense matrix
*/
template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
: public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
{
public:
typedef typename MatrixType::Index Index;
typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
MatrixType::MaxRowsAtCompileTime> WorkVectorType;
FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr,
const HCoeffsType& hCoeffs,
const IntDiagSizeVectorType& rowsTranspositions)
: m_qr(qr),
m_hCoeffs(hCoeffs),
m_rowsTranspositions(rowsTranspositions)
{}
template <typename ResultType>
void evalTo(ResultType& result) const
{
const Index rows = m_qr.rows();
WorkVectorType workspace(rows);
evalTo(result, workspace);
}
template <typename ResultType>
void evalTo(ResultType& result, WorkVectorType& workspace) const
{
using numext::conj;
// compute the product H'_0 H'_1 ... H'_n-1,
// where H_k is the k-th Householder transformation I - h_k v_k v_k'
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
const Index rows = m_qr.rows();
const Index cols = m_qr.cols();
const Index size = (std::min)(rows, cols);
workspace.resize(rows);
result.setIdentity(rows, rows);
for (Index k = size-1; k >= 0; k--)
{
result.block(k, k, rows-k, rows-k)
.applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
}
}
Index rows() const { return m_qr.rows(); }
Index cols() const { return m_qr.rows(); }
protected:
typename MatrixType::Nested m_qr;
typename HCoeffsType::Nested m_hCoeffs;
typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
};
} // end namespace internal
template<typename MatrixType>
inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
{
eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
}
/** \return the full-pivoting Householder QR decomposition of \c *this.
*
* \sa class FullPivHouseholderQR
*/
template<typename Derived>
const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::fullPivHouseholderQr() const
{
return FullPivHouseholderQR<PlainObject>(eval());
}
} // end namespace Eigen
#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
Event Timeline
Log In to Comment