Page MenuHomec4science

wall.cc
No OneTemporary

File Metadata

Created
Sun, Nov 10, 01:27
// Voro++, a 3D cell-based Voronoi library
//
// Author : Chris H. Rycroft (LBL / UC Berkeley)
// Email : chr@alum.mit.edu
// Date : August 30th 2011
/** \file wall.cc
* \brief Function implementations for the derived wall classes. */
#include "wall.hh"
namespace voro {
/** Tests to see whether a point is inside the sphere wall object.
* \param[in,out] (x,y,z) the vector to test.
* \return True if the point is inside, false if the point is outside. */
bool wall_sphere::point_inside(double x,double y,double z) {
return (x-xc)*(x-xc)+(y-yc)*(y-yc)+(z-zc)*(z-zc)<rc*rc;
}
/** Cuts a cell by the sphere wall object. The spherical wall is approximated by
* a single plane applied at the point on the sphere which is closest to the center
* of the cell. This works well for particle arrangements that are packed against
* the wall, but loses accuracy for sparse particle distributions.
* \param[in,out] c the Voronoi cell to be cut.
* \param[in] (x,y,z) the location of the Voronoi cell.
* \return True if the cell still exists, false if the cell is deleted. */
template<class v_cell>
bool wall_sphere::cut_cell_base(v_cell &c,double x,double y,double z) {
double xd=x-xc,yd=y-yc,zd=z-zc,dq=xd*xd+yd*yd+zd*zd;
if (dq>1e-5) {
dq=2*(sqrt(dq)*rc-dq);
return c.nplane(xd,yd,zd,dq,w_id);
}
return true;
}
/** Tests to see whether a point is inside the plane wall object.
* \param[in] (x,y,z) the vector to test.
* \return True if the point is inside, false if the point is outside. */
bool wall_plane::point_inside(double x,double y,double z) {
return x*xc+y*yc+z*zc<ac;
}
/** Cuts a cell by the plane wall object.
* \param[in,out] c the Voronoi cell to be cut.
* \param[in] (x,y,z) the location of the Voronoi cell.
* \return True if the cell still exists, false if the cell is deleted. */
template<class v_cell>
bool wall_plane::cut_cell_base(v_cell &c,double x,double y,double z) {
double dq=2*(ac-x*xc-y*yc-z*zc);
return c.nplane(xc,yc,zc,dq,w_id);
}
/** Tests to see whether a point is inside the cylindrical wall object.
* \param[in] (x,y,z) the vector to test.
* \return True if the point is inside, false if the point is outside. */
bool wall_cylinder::point_inside(double x,double y,double z) {
double xd=x-xc,yd=y-yc,zd=z-zc;
double pa=(xd*xa+yd*ya+zd*za)*asi;
xd-=xa*pa;yd-=ya*pa;zd-=za*pa;
return xd*xd+yd*yd+zd*zd<rc*rc;
}
/** Cuts a cell by the cylindrical wall object. The cylindrical wall is
* approximated by a single plane applied at the point on the cylinder which is
* closest to the center of the cell. This works well for particle arrangements
* that are packed against the wall, but loses accuracy for sparse particle
* distributions.
* \param[in,out] c the Voronoi cell to be cut.
* \param[in] (x,y,z) the location of the Voronoi cell.
* \return True if the cell still exists, false if the cell is deleted. */
template<class v_cell>
bool wall_cylinder::cut_cell_base(v_cell &c,double x,double y,double z) {
double xd=x-xc,yd=y-yc,zd=z-zc,pa=(xd*xa+yd*ya+zd*za)*asi;
xd-=xa*pa;yd-=ya*pa;zd-=za*pa;
pa=xd*xd+yd*yd+zd*zd;
if(pa>1e-5) {
pa=2*(sqrt(pa)*rc-pa);
return c.nplane(xd,yd,zd,pa,w_id);
}
return true;
}
/** Tests to see whether a point is inside the cone wall object.
* \param[in] (x,y,z) the vector to test.
* \return True if the point is inside, false if the point is outside. */
bool wall_cone::point_inside(double x,double y,double z) {
double xd=x-xc,yd=y-yc,zd=z-zc,pa=(xd*xa+yd*ya+zd*za)*asi;
xd-=xa*pa;yd-=ya*pa;zd-=za*pa;
pa*=gra;
if (pa<0) return false;
pa*=pa;
return xd*xd+yd*yd+zd*zd<pa;
}
/** Cuts a cell by the cone wall object. The conical wall is
* approximated by a single plane applied at the point on the cone which is
* closest to the center of the cell. This works well for particle arrangements
* that are packed against the wall, but loses accuracy for sparse particle
* distributions.
* \param[in,out] c the Voronoi cell to be cut.
* \param[in] (x,y,z) the location of the Voronoi cell.
* \return True if the cell still exists, false if the cell is deleted. */
template<class v_cell>
bool wall_cone::cut_cell_base(v_cell &c,double x,double y,double z) {
double xd=x-xc,yd=y-yc,zd=z-zc,xf,yf,zf,q,pa=(xd*xa+yd*ya+zd*za)*asi;
xd-=xa*pa;yd-=ya*pa;zd-=za*pa;
pa=xd*xd+yd*yd+zd*zd;
if(pa>1e-5) {
pa=1/sqrt(pa);
q=sqrt(asi);
xf=-sang*q*xa+cang*pa*xd;
yf=-sang*q*ya+cang*pa*yd;
zf=-sang*q*za+cang*pa*zd;
pa=2*(xf*(xc-x)+yf*(yc-y)+zf*(zc-z));
return c.nplane(xf,yf,zf,pa,w_id);
}
return true;
}
}

Event Timeline