Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90442894
compute_temp_asphere.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 17:17
Size
12 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 17:17 (2 d)
Engine
blob
Format
Raw Data
Handle
22075940
Attached To
rLAMMPS lammps
compute_temp_asphere.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Mike Brown (SNL)
------------------------------------------------------------------------- */
#include <mpi.h>
#include <string.h>
#include "compute_temp_asphere.h"
#include "math_extra.h"
#include "atom.h"
#include "atom_vec_ellipsoid.h"
#include "update.h"
#include "force.h"
#include "domain.h"
#include "modify.h"
#include "group.h"
#include "memory.h"
#include "error.h"
using
namespace
LAMMPS_NS
;
enum
{
ROTATE
,
ALL
};
#define INERTIA 0.2
// moment of inertia prefactor for ellipsoid
/* ---------------------------------------------------------------------- */
ComputeTempAsphere
::
ComputeTempAsphere
(
LAMMPS
*
lmp
,
int
narg
,
char
**
arg
)
:
Compute
(
lmp
,
narg
,
arg
)
{
if
(
narg
<
3
)
error
->
all
(
FLERR
,
"Illegal compute temp/asphere command"
);
scalar_flag
=
vector_flag
=
1
;
size_vector
=
6
;
extscalar
=
0
;
extvector
=
1
;
tempflag
=
1
;
tempbias
=
0
;
id_bias
=
NULL
;
mode
=
ALL
;
int
iarg
=
3
;
while
(
iarg
<
narg
)
{
if
(
strcmp
(
arg
[
iarg
],
"bias"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal compute temp/asphere command"
);
tempbias
=
1
;
int
n
=
strlen
(
arg
[
iarg
+
1
])
+
1
;
id_bias
=
new
char
[
n
];
strcpy
(
id_bias
,
arg
[
iarg
+
1
]);
iarg
+=
2
;
}
else
if
(
strcmp
(
arg
[
iarg
],
"dof"
)
==
0
)
{
if
(
iarg
+
2
>
narg
)
error
->
all
(
FLERR
,
"Illegal compute temp/asphere command"
);
if
(
strcmp
(
arg
[
iarg
+
1
],
"rotate"
)
==
0
)
mode
=
ROTATE
;
else
if
(
strcmp
(
arg
[
iarg
+
1
],
"all"
)
==
0
)
mode
=
ALL
;
else
error
->
all
(
FLERR
,
"Illegal compute temp/asphere command"
);
iarg
+=
2
;
}
else
error
->
all
(
FLERR
,
"Illegal compute temp/asphere command"
);
}
vector
=
new
double
[
6
];
}
/* ---------------------------------------------------------------------- */
ComputeTempAsphere
::~
ComputeTempAsphere
()
{
delete
[]
id_bias
;
delete
[]
vector
;
}
/* ---------------------------------------------------------------------- */
void
ComputeTempAsphere
::
init
()
{
// error check
avec
=
(
AtomVecEllipsoid
*
)
atom
->
style_match
(
"ellipsoid"
);
if
(
!
avec
)
error
->
all
(
FLERR
,
"Compute temp/asphere requires atom style ellipsoid"
);
// check that all particles are finite-size, no point particles allowed
int
*
ellipsoid
=
atom
->
ellipsoid
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
if
(
ellipsoid
[
i
]
<
0
)
error
->
one
(
FLERR
,
"Compute temp/asphere requires extended particles"
);
if
(
tempbias
)
{
int
i
=
modify
->
find_compute
(
id_bias
);
if
(
i
<
0
)
error
->
all
(
FLERR
,
"Could not find compute ID for temperature bias"
);
tbias
=
modify
->
compute
[
i
];
if
(
tbias
->
tempflag
==
0
)
error
->
all
(
FLERR
,
"Bias compute does not calculate temperature"
);
if
(
tbias
->
tempbias
==
0
)
error
->
all
(
FLERR
,
"Bias compute does not calculate a velocity bias"
);
if
(
tbias
->
igroup
!=
igroup
)
error
->
all
(
FLERR
,
"Bias compute group does not match compute group"
);
if
(
strcmp
(
tbias
->
style
,
"temp/region"
)
==
0
)
tempbias
=
2
;
else
tempbias
=
1
;
// init and setup bias compute because
// this compute's setup()->dof_compute() may be called first
tbias
->
init
();
tbias
->
setup
();
}
}
/* ---------------------------------------------------------------------- */
void
ComputeTempAsphere
::
setup
()
{
dynamic
=
0
;
if
(
dynamic_user
||
group
->
dynamic
[
igroup
])
dynamic
=
1
;
dof_compute
();
}
/* ---------------------------------------------------------------------- */
void
ComputeTempAsphere
::
dof_compute
()
{
adjust_dof_fix
();
// 6 dof for 3d, 3 dof for 2d
// which dof are included also depends on mode
// assume full rotation of extended particles
// user should correct this via compute_modify if needed
natoms_temp
=
group
->
count
(
igroup
);
int
nper
;
if
(
domain
->
dimension
==
3
)
{
if
(
mode
==
ALL
)
nper
=
6
;
else
nper
=
3
;
}
else
{
if
(
mode
==
ALL
)
nper
=
3
;
else
nper
=
1
;
}
dof
=
nper
*
natoms_temp
;
// additional adjustments to dof
if
(
tempbias
==
1
)
{
if
(
mode
==
ALL
)
dof
-=
tbias
->
dof_remove
(
-
1
)
*
natoms_temp
;
}
else
if
(
tempbias
==
2
)
{
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
tbias
->
dof_remove_pre
();
int
count
=
0
;
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
if
(
tbias
->
dof_remove
(
i
))
count
++
;
int
count_all
;
MPI_Allreduce
(
&
count
,
&
count_all
,
1
,
MPI_INT
,
MPI_SUM
,
world
);
dof
-=
nper
*
count_all
;
}
dof
-=
extra_dof
+
fix_dof
;
if
(
dof
>
0
)
tfactor
=
force
->
mvv2e
/
(
dof
*
force
->
boltz
);
else
tfactor
=
0.0
;
}
/* ---------------------------------------------------------------------- */
double
ComputeTempAsphere
::
compute_scalar
()
{
invoked_scalar
=
update
->
ntimestep
;
if
(
tempbias
)
{
if
(
tbias
->
invoked_scalar
!=
update
->
ntimestep
)
tbias
->
compute_scalar
();
tbias
->
remove_bias_all
();
}
AtomVecEllipsoid
::
Bonus
*
bonus
=
avec
->
bonus
;
double
**
v
=
atom
->
v
;
double
**
angmom
=
atom
->
angmom
;
double
*
rmass
=
atom
->
rmass
;
int
*
ellipsoid
=
atom
->
ellipsoid
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
double
*
shape
,
*
quat
;
double
wbody
[
3
],
inertia
[
3
];
double
rot
[
3
][
3
];
// sum translational and rotational energy for each particle
// no point particles since divide by inertia
double
t
=
0.0
;
if
(
mode
==
ALL
)
{
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
t
+=
(
v
[
i
][
0
]
*
v
[
i
][
0
]
+
v
[
i
][
1
]
*
v
[
i
][
1
]
+
v
[
i
][
2
]
*
v
[
i
][
2
])
*
rmass
[
i
];
// principal moments of inertia
shape
=
bonus
[
ellipsoid
[
i
]].
shape
;
quat
=
bonus
[
ellipsoid
[
i
]].
quat
;
inertia
[
0
]
=
INERTIA
*
rmass
[
i
]
*
(
shape
[
1
]
*
shape
[
1
]
+
shape
[
2
]
*
shape
[
2
]);
inertia
[
1
]
=
INERTIA
*
rmass
[
i
]
*
(
shape
[
0
]
*
shape
[
0
]
+
shape
[
2
]
*
shape
[
2
]);
inertia
[
2
]
=
INERTIA
*
rmass
[
i
]
*
(
shape
[
0
]
*
shape
[
0
]
+
shape
[
1
]
*
shape
[
1
]);
// wbody = angular velocity in body frame
MathExtra
::
quat_to_mat
(
quat
,
rot
);
MathExtra
::
transpose_matvec
(
rot
,
angmom
[
i
],
wbody
);
wbody
[
0
]
/=
inertia
[
0
];
wbody
[
1
]
/=
inertia
[
1
];
wbody
[
2
]
/=
inertia
[
2
];
t
+=
inertia
[
0
]
*
wbody
[
0
]
*
wbody
[
0
]
+
inertia
[
1
]
*
wbody
[
1
]
*
wbody
[
1
]
+
inertia
[
2
]
*
wbody
[
2
]
*
wbody
[
2
];
}
}
else
{
for
(
int
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
// principal moments of inertia
shape
=
bonus
[
ellipsoid
[
i
]].
shape
;
quat
=
bonus
[
ellipsoid
[
i
]].
quat
;
inertia
[
0
]
=
INERTIA
*
rmass
[
i
]
*
(
shape
[
1
]
*
shape
[
1
]
+
shape
[
2
]
*
shape
[
2
]);
inertia
[
1
]
=
INERTIA
*
rmass
[
i
]
*
(
shape
[
0
]
*
shape
[
0
]
+
shape
[
2
]
*
shape
[
2
]);
inertia
[
2
]
=
INERTIA
*
rmass
[
i
]
*
(
shape
[
0
]
*
shape
[
0
]
+
shape
[
1
]
*
shape
[
1
]);
// wbody = angular velocity in body frame
MathExtra
::
quat_to_mat
(
quat
,
rot
);
MathExtra
::
transpose_matvec
(
rot
,
angmom
[
i
],
wbody
);
wbody
[
0
]
/=
inertia
[
0
];
wbody
[
1
]
/=
inertia
[
1
];
wbody
[
2
]
/=
inertia
[
2
];
t
+=
inertia
[
0
]
*
wbody
[
0
]
*
wbody
[
0
]
+
inertia
[
1
]
*
wbody
[
1
]
*
wbody
[
1
]
+
inertia
[
2
]
*
wbody
[
2
]
*
wbody
[
2
];
}
}
if
(
tempbias
)
tbias
->
restore_bias_all
();
MPI_Allreduce
(
&
t
,
&
scalar
,
1
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
if
(
dynamic
||
tempbias
==
2
)
dof_compute
();
if
(
dof
<
0.0
&&
natoms_temp
>
0.0
)
error
->
all
(
FLERR
,
"Temperature compute degrees of freedom < 0"
);
scalar
*=
tfactor
;
return
scalar
;
}
/* ---------------------------------------------------------------------- */
void
ComputeTempAsphere
::
compute_vector
()
{
int
i
;
invoked_vector
=
update
->
ntimestep
;
if
(
tempbias
)
{
if
(
tbias
->
invoked_vector
!=
update
->
ntimestep
)
tbias
->
compute_vector
();
tbias
->
remove_bias_all
();
}
AtomVecEllipsoid
::
Bonus
*
bonus
=
avec
->
bonus
;
double
**
v
=
atom
->
v
;
double
**
angmom
=
atom
->
angmom
;
double
*
rmass
=
atom
->
rmass
;
int
*
ellipsoid
=
atom
->
ellipsoid
;
int
*
mask
=
atom
->
mask
;
int
nlocal
=
atom
->
nlocal
;
double
*
shape
,
*
quat
;
double
wbody
[
3
],
inertia
[
3
],
t
[
6
];
double
rot
[
3
][
3
];
double
massone
;
// sum translational and rotational energy for each particle
// no point particles since divide by inertia
for
(
i
=
0
;
i
<
6
;
i
++
)
t
[
i
]
=
0.0
;
if
(
mode
==
ALL
)
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
massone
=
rmass
[
i
];
t
[
0
]
+=
massone
*
v
[
i
][
0
]
*
v
[
i
][
0
];
t
[
1
]
+=
massone
*
v
[
i
][
1
]
*
v
[
i
][
1
];
t
[
2
]
+=
massone
*
v
[
i
][
2
]
*
v
[
i
][
2
];
t
[
3
]
+=
massone
*
v
[
i
][
0
]
*
v
[
i
][
1
];
t
[
4
]
+=
massone
*
v
[
i
][
0
]
*
v
[
i
][
2
];
t
[
5
]
+=
massone
*
v
[
i
][
1
]
*
v
[
i
][
2
];
// principal moments of inertia
shape
=
bonus
[
ellipsoid
[
i
]].
shape
;
quat
=
bonus
[
ellipsoid
[
i
]].
quat
;
inertia
[
0
]
=
INERTIA
*
massone
*
(
shape
[
1
]
*
shape
[
1
]
+
shape
[
2
]
*
shape
[
2
]);
inertia
[
1
]
=
INERTIA
*
massone
*
(
shape
[
0
]
*
shape
[
0
]
+
shape
[
2
]
*
shape
[
2
]);
inertia
[
2
]
=
INERTIA
*
massone
*
(
shape
[
0
]
*
shape
[
0
]
+
shape
[
1
]
*
shape
[
1
]);
// wbody = angular velocity in body frame
MathExtra
::
quat_to_mat
(
quat
,
rot
);
MathExtra
::
transpose_matvec
(
rot
,
angmom
[
i
],
wbody
);
wbody
[
0
]
/=
inertia
[
0
];
wbody
[
1
]
/=
inertia
[
1
];
wbody
[
2
]
/=
inertia
[
2
];
// rotational kinetic energy
t
[
0
]
+=
inertia
[
0
]
*
wbody
[
0
]
*
wbody
[
0
];
t
[
1
]
+=
inertia
[
1
]
*
wbody
[
1
]
*
wbody
[
1
];
t
[
2
]
+=
inertia
[
2
]
*
wbody
[
2
]
*
wbody
[
2
];
t
[
3
]
+=
inertia
[
0
]
*
wbody
[
0
]
*
wbody
[
1
];
t
[
4
]
+=
inertia
[
1
]
*
wbody
[
0
]
*
wbody
[
2
];
t
[
5
]
+=
inertia
[
2
]
*
wbody
[
1
]
*
wbody
[
2
];
}
}
else
{
for
(
i
=
0
;
i
<
nlocal
;
i
++
)
if
(
mask
[
i
]
&
groupbit
)
{
// principal moments of inertia
shape
=
bonus
[
ellipsoid
[
i
]].
shape
;
quat
=
bonus
[
ellipsoid
[
i
]].
quat
;
massone
=
rmass
[
i
];
inertia
[
0
]
=
INERTIA
*
massone
*
(
shape
[
1
]
*
shape
[
1
]
+
shape
[
2
]
*
shape
[
2
]);
inertia
[
1
]
=
INERTIA
*
massone
*
(
shape
[
0
]
*
shape
[
0
]
+
shape
[
2
]
*
shape
[
2
]);
inertia
[
2
]
=
INERTIA
*
massone
*
(
shape
[
0
]
*
shape
[
0
]
+
shape
[
1
]
*
shape
[
1
]);
// wbody = angular velocity in body frame
MathExtra
::
quat_to_mat
(
quat
,
rot
);
MathExtra
::
transpose_matvec
(
rot
,
angmom
[
i
],
wbody
);
wbody
[
0
]
/=
inertia
[
0
];
wbody
[
1
]
/=
inertia
[
1
];
wbody
[
2
]
/=
inertia
[
2
];
// rotational kinetic energy
t
[
0
]
+=
inertia
[
0
]
*
wbody
[
0
]
*
wbody
[
0
];
t
[
1
]
+=
inertia
[
1
]
*
wbody
[
1
]
*
wbody
[
1
];
t
[
2
]
+=
inertia
[
2
]
*
wbody
[
2
]
*
wbody
[
2
];
t
[
3
]
+=
inertia
[
0
]
*
wbody
[
0
]
*
wbody
[
1
];
t
[
4
]
+=
inertia
[
1
]
*
wbody
[
0
]
*
wbody
[
2
];
t
[
5
]
+=
inertia
[
2
]
*
wbody
[
1
]
*
wbody
[
2
];
}
}
if
(
tempbias
)
tbias
->
restore_bias_all
();
MPI_Allreduce
(
t
,
vector
,
6
,
MPI_DOUBLE
,
MPI_SUM
,
world
);
for
(
i
=
0
;
i
<
6
;
i
++
)
vector
[
i
]
*=
force
->
mvv2e
;
}
/* ----------------------------------------------------------------------
remove velocity bias from atom I to leave thermal velocity
------------------------------------------------------------------------- */
void
ComputeTempAsphere
::
remove_bias
(
int
i
,
double
*
v
)
{
if
(
tbias
)
tbias
->
remove_bias
(
i
,
v
);
}
/* ----------------------------------------------------------------------
remove velocity bias from atom I to leave thermal velocity
------------------------------------------------------------------------- */
void
ComputeTempAsphere
::
remove_bias_thr
(
int
i
,
double
*
v
,
double
*
b
)
{
if
(
tbias
)
tbias
->
remove_bias_thr
(
i
,
v
,
b
);
}
/* ----------------------------------------------------------------------
add back in velocity bias to atom I removed by remove_bias()
assume remove_bias() was previously called
------------------------------------------------------------------------- */
void
ComputeTempAsphere
::
restore_bias
(
int
i
,
double
*
v
)
{
if
(
tbias
)
tbias
->
restore_bias
(
i
,
v
);
}
/* ----------------------------------------------------------------------
add back in velocity bias to atom I removed by remove_bias_thr()
assume remove_bias_thr() was previously called with the same buffer b
------------------------------------------------------------------------- */
void
ComputeTempAsphere
::
restore_bias_thr
(
int
i
,
double
*
v
,
double
*
b
)
{
if
(
tbias
)
tbias
->
restore_bias_thr
(
i
,
v
,
b
);
}
Event Timeline
Log In to Comment