Page MenuHomec4science

compute_temp_asphere.cpp
No OneTemporary

File Metadata

Created
Fri, Jun 28, 00:50

compute_temp_asphere.cpp

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Mike Brown (SNL)
------------------------------------------------------------------------- */
#include "mpi.h"
#include "compute_temp_asphere.h"
#include "math_extra.h"
#include "atom.h"
#include "force.h"
#include "domain.h"
#include "modify.h"
#include "fix.h"
#include "group.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define INVOKED_SCALAR 1
#define INVOKED_VECTOR 2
/* ---------------------------------------------------------------------- */
ComputeTempAsphere::ComputeTempAsphere(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg)
{
if (narg != 3) error->all("Illegal compute temp command");
if (!atom->quat_flag || !atom->angmom_flag)
error->all("Compute temp/asphere requires atom attributes quat, angmom");
scalar_flag = vector_flag = 1;
size_vector = 6;
extscalar = 0;
extvector = 1;
tempflag = 1;
vector = new double[6];
inertia =
memory->create_2d_double_array(atom->ntypes+1,3,"fix_temp_sphere:inertia");
}
/* ---------------------------------------------------------------------- */
ComputeTempAsphere::~ComputeTempAsphere()
{
delete [] vector;
memory->destroy_2d_double_array(inertia);
}
/* ---------------------------------------------------------------------- */
void ComputeTempAsphere::init()
{
fix_dof = 0;
for (int i = 0; i < modify->nfix; i++)
fix_dof += modify->fix[i]->dof(igroup);
recount();
calculate_inertia();
}
/* ---------------------------------------------------------------------- */
void ComputeTempAsphere::recount()
{
double natoms = group->count(igroup);
dof = domain->dimension * natoms;
dof -= extra_dof + fix_dof;
// add rotational degrees of freedom
// 0 for sphere, 2 for uniaxial, 3 for biaxial
double **shape = atom->shape;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
int itype;
int rot_dof = 0;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
itype = type[i];
if (shape[itype][0] == shape[itype][1] &&
shape[itype][1] == shape[itype][2]) continue;
else if (shape[itype][0] == shape[itype][1] ||
shape[itype][1] == shape[itype][2] ||
shape[itype][0] == shape[itype][2]) rot_dof += 2;
else rot_dof += 3;
}
int rot_total;
MPI_Allreduce(&rot_dof,&rot_total,1,MPI_INT,MPI_SUM,world);
dof += rot_total;
if (dof > 0) tfactor = force->mvv2e / (dof * force->boltz);
else tfactor = 0.0;
}
/* ---------------------------------------------------------------------- */
double ComputeTempAsphere::compute_scalar()
{
invoked |= INVOKED_SCALAR;
double **v = atom->v;
double **quat = atom->quat;
double **angmom = atom->angmom;
double *mass = atom->mass;
double **shape = atom->shape;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
int itype;
double wbody[3];
double rot[3][3];
double t = 0.0;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
// translational kinetic energy
itype = type[i];
t += (v[i][0]*v[i][0] + v[i][1]*v[i][1] + v[i][2]*v[i][2]) * mass[itype];
// wbody = angular velocity in body frame
if (!(shape[itype][0] == shape[itype][1] &&
shape[itype][1] == shape[itype][2])) {
MathExtra::quat_to_mat(quat[i],rot);
MathExtra::transpose_times_column3(rot,angmom[i],wbody);
wbody[0] /= inertia[itype][0];
wbody[1] /= inertia[itype][1];
wbody[2] /= inertia[itype][2];
// rotational kinetic energy
t += inertia[itype][0]*wbody[0]*wbody[0]+
inertia[itype][1]*wbody[1]*wbody[1]+
inertia[itype][2]*wbody[2]*wbody[2];
}
}
MPI_Allreduce(&t,&scalar,1,MPI_DOUBLE,MPI_SUM,world);
if (dynamic) recount();
scalar *= tfactor;
return scalar;
}
/* ---------------------------------------------------------------------- */
void ComputeTempAsphere::compute_vector()
{
int i;
invoked |= INVOKED_VECTOR;
double **v = atom->v;
double **quat = atom->quat;
double **angmom = atom->angmom;
double *mass = atom->mass;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
int itype;
double wbody[3];
double rot[3][3];
double massone,t[6];
for (i = 0; i < 6; i++) t[i] = 0.0;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
// translational kinetic energy
itype = type[i];
massone = mass[itype];
t[0] += massone * v[i][0]*v[i][0];
t[1] += massone * v[i][1]*v[i][1];
t[2] += massone * v[i][2]*v[i][2];
t[3] += massone * v[i][0]*v[i][1];
t[4] += massone * v[i][0]*v[i][2];
t[5] += massone * v[i][1]*v[i][2];
// wbody = angular velocity in body frame
MathExtra::quat_to_mat(quat[i],rot);
MathExtra::transpose_times_column3(rot,angmom[i],wbody);
wbody[0] /= inertia[itype][0];
wbody[1] /= inertia[itype][1];
wbody[2] /= inertia[itype][2];
// rotational kinetic energy
t[0] += inertia[itype][0]*wbody[0]*wbody[0];
t[1] += inertia[itype][1]*wbody[1]*wbody[1];
t[2] += inertia[itype][2]*wbody[2]*wbody[2];
t[3] += inertia[itype][0]*wbody[0]*wbody[1];
t[4] += inertia[itype][1]*wbody[0]*wbody[2];
t[5] += inertia[itype][2]*wbody[1]*wbody[2];
}
MPI_Allreduce(t,vector,6,MPI_DOUBLE,MPI_SUM,world);
for (i = 0; i < 6; i++) vector[i] *= force->mvv2e;
}
/* ----------------------------------------------------------------------
principal moments of inertia for ellipsoids
------------------------------------------------------------------------- */
void ComputeTempAsphere::calculate_inertia()
{
double *mass = atom->mass;
double **shape = atom->shape;
for (int i = 1; i <= atom->ntypes; i++) {
inertia[i][0] = mass[i] *
(shape[i][1]*shape[i][1]+shape[i][2]*shape[i][2]) / 5.0;
inertia[i][1] = mass[i] *
(shape[i][0]*shape[i][0]+shape[i][2]*shape[i][2]) / 5.0;
inertia[i][2] = mass[i] *
(shape[i][0]*shape[i][0]+shape[i][1]*shape[i][1]) / 5.0;
}
}

Event Timeline