Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91362649
kissfft.h
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 08:45
Size
14 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 08:45 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
21608770
Attached To
rLAMMPS lammps
kissfft.h
View Options
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/*
we use a stripped down KISS FFT as default FFT for LAMMPS
this code is adapted from kiss_fft_v1_2_9
homepage: http://kissfft.sf.net/
changes 2008-2011 by Axel Kohlmeyer <akohlmey@gmail.com>
*/
#ifndef LMP_FFT_KISSFFT
#define LMP_FFT_KISSFFT
#include <stdlib.h>
#include <string.h>
#include <math.h>
#if defined(_OPENMP)
#include <omp.h>
#endif
#ifndef M_PI
#define M_PI 3.141592653589793238462643383279502884197169399375105820974944
#endif
/*
Copyright (c) 2003-2010, Mark Borgerding
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
* Neither the author nor the names of any contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define KISS_FFT_MALLOC malloc
#define KISS_FFT_FREE free
#define MAXFACTORS 32
/* e.g. an fft of length 128 has 4 factors
as far as kissfft is concerned: 4*4*4*2 */
struct
kiss_fft_state
{
int
nfft
;
int
inverse
;
int
factors
[
2
*
MAXFACTORS
];
FFT_DATA
twiddles
[
1
];
};
#ifdef KISS_FFT_USE_ALLOCA
// define this to allow use of alloca instead of malloc for temporary buffers
// Temporary buffers are used in two case:
// 1. FFT sizes that have "bad" factors. i.e. not 2,3 and 5
// 2. "in-place" FFTs. Notice the quotes, since kissfft does not really do an in-place transform.
#include <alloca.h>
#define KISS_FFT_TMP_ALLOC(nbytes) alloca(nbytes)
#define KISS_FFT_TMP_FREE(ptr)
#else
#define KISS_FFT_TMP_ALLOC(nbytes) KISS_FFT_MALLOC(nbytes)
#define KISS_FFT_TMP_FREE(ptr) KISS_FFT_FREE(ptr)
#endif
static
kiss_fft_cfg
kiss_fft_alloc
(
int
,
int
,
void
*
,
size_t
*
);
static
void
kiss_fft
(
kiss_fft_cfg
,
const
FFT_DATA
*
,
FFT_DATA
*
);
/*
Explanation of macros dealing with complex math:
C_MUL(m,a,b) : m = a*b
C_FIXDIV( c , div ) : if a fixed point impl., c /= div. noop otherwise
C_SUB( res, a,b) : res = a - b
C_SUBFROM( res , a) : res -= a
C_ADDTO( res , a) : res += a
* */
#define S_MUL(a,b) ( (a)*(b) )
#define C_MUL(m,a,b) \
do{ (m).re = (a).re*(b).re - (a).im*(b).im;\
(m).im = (a).re*(b).im + (a).im*(b).re; }while(0)
#define C_FIXDIV(c,div)
/* NOOP */
#define C_MULBYSCALAR( c, s ) \
do{ (c).re *= (s);\
(c).im *= (s); }while(0)
#ifndef CHECK_OVERFLOW_OP
# define CHECK_OVERFLOW_OP(a,op,b)
/* noop */
#endif
#define C_ADD( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).re,+,(b).re)\
CHECK_OVERFLOW_OP((a).im,+,(b).im)\
(res).re=(a).re+(b).re; (res).im=(a).im+(b).im; \
}while(0)
#define C_SUB( res, a,b)\
do { \
CHECK_OVERFLOW_OP((a).re,-,(b).re)\
CHECK_OVERFLOW_OP((a).im,-,(b).im)\
(res).re=(a).re-(b).re; (res).im=(a).im-(b).im; \
}while(0)
#define C_ADDTO( res , a)\
do { \
CHECK_OVERFLOW_OP((res).re,+,(a).re)\
CHECK_OVERFLOW_OP((res).im,+,(a).im)\
(res).re += (a).re; (res).im += (a).im;\
}while(0)
#define C_SUBFROM( res , a)\
do {\
CHECK_OVERFLOW_OP((res).re,-,(a).re)\
CHECK_OVERFLOW_OP((res).im,-,(a).im)\
(res).re -= (a).re; (res).im -= (a).im; \
}while(0)
#define KISS_FFT_COS(phase) (kiss_fft_scalar) cos(phase)
#define KISS_FFT_SIN(phase) (kiss_fft_scalar) sin(phase)
#define HALF_OF(x) ((x)*.5)
#define kf_cexp(x,phase) \
do{ \
(x)->re = KISS_FFT_COS(phase);\
(x)->im = KISS_FFT_SIN(phase);\
}while(0)
static
void
kf_bfly2
(
FFT_DATA
*
Fout
,
const
size_t
fstride
,
const
kiss_fft_cfg
st
,
int
m
)
{
FFT_DATA
*
Fout2
;
FFT_DATA
*
tw1
=
st
->
twiddles
;
FFT_DATA
t
;
Fout2
=
Fout
+
m
;
do
{
C_FIXDIV
(
*
Fout
,
2
);
C_FIXDIV
(
*
Fout2
,
2
);
C_MUL
(
t
,
*
Fout2
,
*
tw1
);
tw1
+=
fstride
;
C_SUB
(
*
Fout2
,
*
Fout
,
t
);
C_ADDTO
(
*
Fout
,
t
);
++
Fout2
;
++
Fout
;
}
while
(
--
m
);
}
static
void
kf_bfly4
(
FFT_DATA
*
Fout
,
const
size_t
fstride
,
const
kiss_fft_cfg
st
,
const
size_t
m
)
{
FFT_DATA
*
tw1
,
*
tw2
,
*
tw3
;
FFT_DATA
scratch
[
6
];
size_t
k
=
m
;
const
size_t
m2
=
2
*
m
;
const
size_t
m3
=
3
*
m
;
tw3
=
tw2
=
tw1
=
st
->
twiddles
;
do
{
C_FIXDIV
(
*
Fout
,
4
);
C_FIXDIV
(
Fout
[
m
],
4
);
C_FIXDIV
(
Fout
[
m2
],
4
);
C_FIXDIV
(
Fout
[
m3
],
4
);
C_MUL
(
scratch
[
0
],
Fout
[
m
]
,
*
tw1
);
C_MUL
(
scratch
[
1
],
Fout
[
m2
]
,
*
tw2
);
C_MUL
(
scratch
[
2
],
Fout
[
m3
]
,
*
tw3
);
C_SUB
(
scratch
[
5
]
,
*
Fout
,
scratch
[
1
]
);
C_ADDTO
(
*
Fout
,
scratch
[
1
]);
C_ADD
(
scratch
[
3
]
,
scratch
[
0
]
,
scratch
[
2
]
);
C_SUB
(
scratch
[
4
]
,
scratch
[
0
]
,
scratch
[
2
]
);
C_SUB
(
Fout
[
m2
],
*
Fout
,
scratch
[
3
]
);
tw1
+=
fstride
;
tw2
+=
fstride
*
2
;
tw3
+=
fstride
*
3
;
C_ADDTO
(
*
Fout
,
scratch
[
3
]
);
if
(
st
->
inverse
)
{
Fout
[
m
].
re
=
scratch
[
5
].
re
-
scratch
[
4
].
im
;
Fout
[
m
].
im
=
scratch
[
5
].
im
+
scratch
[
4
].
re
;
Fout
[
m3
].
re
=
scratch
[
5
].
re
+
scratch
[
4
].
im
;
Fout
[
m3
].
im
=
scratch
[
5
].
im
-
scratch
[
4
].
re
;
}
else
{
Fout
[
m
].
re
=
scratch
[
5
].
re
+
scratch
[
4
].
im
;
Fout
[
m
].
im
=
scratch
[
5
].
im
-
scratch
[
4
].
re
;
Fout
[
m3
].
re
=
scratch
[
5
].
re
-
scratch
[
4
].
im
;
Fout
[
m3
].
im
=
scratch
[
5
].
im
+
scratch
[
4
].
re
;
}
++
Fout
;
}
while
(
--
k
);
}
static
void
kf_bfly3
(
FFT_DATA
*
Fout
,
const
size_t
fstride
,
const
kiss_fft_cfg
st
,
size_t
m
)
{
size_t
k
=
m
;
const
size_t
m2
=
2
*
m
;
FFT_DATA
*
tw1
,
*
tw2
;
FFT_DATA
scratch
[
5
];
FFT_DATA
epi3
;
epi3
=
st
->
twiddles
[
fstride
*
m
];
tw1
=
tw2
=
st
->
twiddles
;
do
{
C_FIXDIV
(
*
Fout
,
3
);
C_FIXDIV
(
Fout
[
m
],
3
);
C_FIXDIV
(
Fout
[
m2
],
3
);
C_MUL
(
scratch
[
1
],
Fout
[
m
]
,
*
tw1
);
C_MUL
(
scratch
[
2
],
Fout
[
m2
]
,
*
tw2
);
C_ADD
(
scratch
[
3
],
scratch
[
1
],
scratch
[
2
]);
C_SUB
(
scratch
[
0
],
scratch
[
1
],
scratch
[
2
]);
tw1
+=
fstride
;
tw2
+=
fstride
*
2
;
Fout
[
m
].
re
=
Fout
->
re
-
HALF_OF
(
scratch
[
3
].
re
);
Fout
[
m
].
im
=
Fout
->
im
-
HALF_OF
(
scratch
[
3
].
im
);
C_MULBYSCALAR
(
scratch
[
0
]
,
epi3
.
im
);
C_ADDTO
(
*
Fout
,
scratch
[
3
]);
Fout
[
m2
].
re
=
Fout
[
m
].
re
+
scratch
[
0
].
im
;
Fout
[
m2
].
im
=
Fout
[
m
].
im
-
scratch
[
0
].
re
;
Fout
[
m
].
re
-=
scratch
[
0
].
im
;
Fout
[
m
].
im
+=
scratch
[
0
].
re
;
++
Fout
;
}
while
(
--
k
);
}
static
void
kf_bfly5
(
FFT_DATA
*
Fout
,
const
size_t
fstride
,
const
kiss_fft_cfg
st
,
int
m
)
{
FFT_DATA
*
Fout0
,
*
Fout1
,
*
Fout2
,
*
Fout3
,
*
Fout4
;
int
u
;
FFT_DATA
scratch
[
13
];
FFT_DATA
*
twiddles
=
st
->
twiddles
;
FFT_DATA
*
tw
;
FFT_DATA
ya
,
yb
;
ya
=
twiddles
[
fstride
*
m
];
yb
=
twiddles
[
fstride
*
2
*
m
];
Fout0
=
Fout
;
Fout1
=
Fout0
+
m
;
Fout2
=
Fout0
+
2
*
m
;
Fout3
=
Fout0
+
3
*
m
;
Fout4
=
Fout0
+
4
*
m
;
tw
=
st
->
twiddles
;
for
(
u
=
0
;
u
<
m
;
++
u
)
{
C_FIXDIV
(
*
Fout0
,
5
);
C_FIXDIV
(
*
Fout1
,
5
);
C_FIXDIV
(
*
Fout2
,
5
);
C_FIXDIV
(
*
Fout3
,
5
);
C_FIXDIV
(
*
Fout4
,
5
);
scratch
[
0
]
=
*
Fout0
;
C_MUL
(
scratch
[
1
]
,
*
Fout1
,
tw
[
u
*
fstride
]);
C_MUL
(
scratch
[
2
]
,
*
Fout2
,
tw
[
2
*
u
*
fstride
]);
C_MUL
(
scratch
[
3
]
,
*
Fout3
,
tw
[
3
*
u
*
fstride
]);
C_MUL
(
scratch
[
4
]
,
*
Fout4
,
tw
[
4
*
u
*
fstride
]);
C_ADD
(
scratch
[
7
],
scratch
[
1
],
scratch
[
4
]);
C_SUB
(
scratch
[
10
],
scratch
[
1
],
scratch
[
4
]);
C_ADD
(
scratch
[
8
],
scratch
[
2
],
scratch
[
3
]);
C_SUB
(
scratch
[
9
],
scratch
[
2
],
scratch
[
3
]);
Fout0
->
re
+=
scratch
[
7
].
re
+
scratch
[
8
].
re
;
Fout0
->
im
+=
scratch
[
7
].
im
+
scratch
[
8
].
im
;
scratch
[
5
].
re
=
scratch
[
0
].
re
+
S_MUL
(
scratch
[
7
].
re
,
ya
.
re
)
+
S_MUL
(
scratch
[
8
].
re
,
yb
.
re
);
scratch
[
5
].
im
=
scratch
[
0
].
im
+
S_MUL
(
scratch
[
7
].
im
,
ya
.
re
)
+
S_MUL
(
scratch
[
8
].
im
,
yb
.
re
);
scratch
[
6
].
re
=
S_MUL
(
scratch
[
10
].
im
,
ya
.
im
)
+
S_MUL
(
scratch
[
9
].
im
,
yb
.
im
);
scratch
[
6
].
im
=
-
S_MUL
(
scratch
[
10
].
re
,
ya
.
im
)
-
S_MUL
(
scratch
[
9
].
re
,
yb
.
im
);
C_SUB
(
*
Fout1
,
scratch
[
5
],
scratch
[
6
]);
C_ADD
(
*
Fout4
,
scratch
[
5
],
scratch
[
6
]);
scratch
[
11
].
re
=
scratch
[
0
].
re
+
S_MUL
(
scratch
[
7
].
re
,
yb
.
re
)
+
S_MUL
(
scratch
[
8
].
re
,
ya
.
re
);
scratch
[
11
].
im
=
scratch
[
0
].
im
+
S_MUL
(
scratch
[
7
].
im
,
yb
.
re
)
+
S_MUL
(
scratch
[
8
].
im
,
ya
.
re
);
scratch
[
12
].
re
=
-
S_MUL
(
scratch
[
10
].
im
,
yb
.
im
)
+
S_MUL
(
scratch
[
9
].
im
,
ya
.
im
);
scratch
[
12
].
im
=
S_MUL
(
scratch
[
10
].
re
,
yb
.
im
)
-
S_MUL
(
scratch
[
9
].
re
,
ya
.
im
);
C_ADD
(
*
Fout2
,
scratch
[
11
],
scratch
[
12
]);
C_SUB
(
*
Fout3
,
scratch
[
11
],
scratch
[
12
]);
++
Fout0
;
++
Fout1
;
++
Fout2
;
++
Fout3
;
++
Fout4
;
}
}
/* perform the butterfly for one stage of a mixed radix FFT */
static
void
kf_bfly_generic
(
FFT_DATA
*
Fout
,
const
size_t
fstride
,
const
kiss_fft_cfg
st
,
int
m
,
int
p
)
{
int
u
,
k
,
q1
,
q
;
FFT_DATA
*
twiddles
=
st
->
twiddles
;
FFT_DATA
t
;
int
Norig
=
st
->
nfft
;
FFT_DATA
*
scratch
=
(
FFT_DATA
*
)
KISS_FFT_TMP_ALLOC
(
sizeof
(
FFT_DATA
)
*
p
);
for
(
u
=
0
;
u
<
m
;
++
u
)
{
k
=
u
;
for
(
q1
=
0
;
q1
<
p
;
++
q1
)
{
scratch
[
q1
]
=
Fout
[
k
];
C_FIXDIV
(
scratch
[
q1
],
p
);
k
+=
m
;
}
k
=
u
;
for
(
q1
=
0
;
q1
<
p
;
++
q1
)
{
int
twidx
=
0
;
Fout
[
k
]
=
scratch
[
0
];
for
(
q
=
1
;
q
<
p
;
++
q
)
{
twidx
+=
fstride
*
k
;
if
(
twidx
>=
Norig
)
twidx
-=
Norig
;
C_MUL
(
t
,
scratch
[
q
]
,
twiddles
[
twidx
]
);
C_ADDTO
(
Fout
[
k
]
,
t
);
}
k
+=
m
;
}
}
KISS_FFT_TMP_FREE
(
scratch
);
}
static
void
kf_work
(
FFT_DATA
*
Fout
,
const
FFT_DATA
*
f
,
const
size_t
fstride
,
int
in_stride
,
int
*
factors
,
const
kiss_fft_cfg
st
)
{
FFT_DATA
*
Fout_beg
=
Fout
;
const
int
p
=*
factors
++
;
/* the radix */
const
int
m
=*
factors
++
;
/* stage's fft length/p */
const
FFT_DATA
*
Fout_end
=
Fout
+
p
*
m
;
if
(
m
==
1
)
{
do
{
*
Fout
=
*
f
;
f
+=
fstride
*
in_stride
;
}
while
(
++
Fout
!=
Fout_end
);
}
else
{
do
{
/* recursive call:
DFT of size m*p performed by doing
p instances of smaller DFTs of size m,
each one takes a decimated version of the input */
kf_work
(
Fout
,
f
,
fstride
*
p
,
in_stride
,
factors
,
st
);
f
+=
fstride
*
in_stride
;
}
while
(
(
Fout
+=
m
)
!=
Fout_end
);
}
Fout
=
Fout_beg
;
/* recombine the p smaller DFTs */
switch
(
p
)
{
case
2
:
kf_bfly2
(
Fout
,
fstride
,
st
,
m
);
break
;
case
3
:
kf_bfly3
(
Fout
,
fstride
,
st
,
m
);
break
;
case
4
:
kf_bfly4
(
Fout
,
fstride
,
st
,
m
);
break
;
case
5
:
kf_bfly5
(
Fout
,
fstride
,
st
,
m
);
break
;
default:
kf_bfly_generic
(
Fout
,
fstride
,
st
,
m
,
p
);
break
;
}
}
/* facbuf is populated by p1,m1,p2,m2, ...
where
p[i] * m[i] = m[i-1]
m0 = n */
static
void
kf_factor
(
int
n
,
int
*
facbuf
)
{
int
p
=
4
,
nf
=
0
;
double
floor_sqrt
;
floor_sqrt
=
floor
(
sqrt
((
double
)
n
)
);
/* factor out the remaining powers of 4, powers of 2,
and then any other remaining primes */
do
{
if
(
nf
==
MAXFACTORS
)
p
=
n
;
/* make certain that we don't run out of space */
while
(
n
%
p
)
{
switch
(
p
)
{
case
4
:
p
=
2
;
break
;
case
2
:
p
=
3
;
break
;
default:
p
+=
2
;
break
;
}
if
(
p
>
floor_sqrt
)
p
=
n
;
/* no more factors, skip to end */
}
n
/=
p
;
*
facbuf
++
=
p
;
*
facbuf
++
=
n
;
++
nf
;
}
while
(
n
>
1
);
}
/*
* User-callable function to allocate all necessary storage space for the fft.
*
* The return value is a contiguous block of memory, allocated with malloc. As such,
* It can be freed with free(), rather than a kiss_fft-specific function.
*/
static
kiss_fft_cfg
kiss_fft_alloc
(
int
nfft
,
int
inverse_fft
,
void
*
mem
,
size_t
*
lenmem
)
{
kiss_fft_cfg
st
=
NULL
;
size_t
memneeded
=
sizeof
(
struct
kiss_fft_state
)
+
sizeof
(
FFT_DATA
)
*
(
nfft
-
1
);
/* twiddle factors */
if
(
lenmem
==
NULL
)
{
st
=
(
kiss_fft_cfg
)
KISS_FFT_MALLOC
(
memneeded
);
}
else
{
if
(
mem
!=
NULL
&&
*
lenmem
>=
memneeded
)
st
=
(
kiss_fft_cfg
)
mem
;
*
lenmem
=
memneeded
;
}
if
(
st
)
{
int
i
;
st
->
nfft
=
nfft
;
st
->
inverse
=
inverse_fft
;
for
(
i
=
0
;
i
<
nfft
;
++
i
)
{
const
double
phase
=
(
st
->
inverse
?
2.0
*
M_PI
:-
2.0
*
M_PI
)
*
i
/
nfft
;
kf_cexp
(
st
->
twiddles
+
i
,
phase
);
}
kf_factor
(
nfft
,
st
->
factors
);
}
return
st
;
}
static
void
kiss_fft_stride
(
kiss_fft_cfg
st
,
const
FFT_DATA
*
fin
,
FFT_DATA
*
fout
,
int
in_stride
)
{
if
(
fin
==
fout
)
{
// NOTE: this is not really an in-place FFT algorithm.
// It just performs an out-of-place FFT into a temp buffer
FFT_DATA
*
tmpbuf
=
(
FFT_DATA
*
)
KISS_FFT_TMP_ALLOC
(
sizeof
(
FFT_DATA
)
*
st
->
nfft
);
kf_work
(
tmpbuf
,
fin
,
1
,
in_stride
,
st
->
factors
,
st
);
memcpy
(
fout
,
tmpbuf
,
sizeof
(
FFT_DATA
)
*
st
->
nfft
);
KISS_FFT_TMP_FREE
(
tmpbuf
);
}
else
{
kf_work
(
fout
,
fin
,
1
,
in_stride
,
st
->
factors
,
st
);
}
}
static
void
kiss_fft
(
kiss_fft_cfg
cfg
,
const
FFT_DATA
*
fin
,
FFT_DATA
*
fout
)
{
kiss_fft_stride
(
cfg
,
fin
,
fout
,
1
);
}
#endif
Event Timeline
Log In to Comment