Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91318406
pppm.cpp
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 9, 23:14
Size
56 KB
Mime Type
text/x-c
Expires
Mon, Nov 11, 23:14 (2 d)
Engine
blob
Format
Raw Data
Handle
22242122
Attached To
rLAMMPS lammps
pppm.cpp
View Options
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Roy Pollock (LLNL), Paul Crozier (SNL)
------------------------------------------------------------------------- */
#include "lmptype.h"
#include "mpi.h"
#include "string.h"
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#include "pppm.h"
#include "atom.h"
#include "comm.h"
#include "neighbor.h"
#include "force.h"
#include "pair.h"
#include "bond.h"
#include "angle.h"
#include "domain.h"
#include "fft3d_wrap.h"
#include "remap_wrap.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
#define MAXORDER 7
#define OFFSET 16384
#define SMALL 0.00001
#define LARGE 10000.0
#define EPS_HOC 1.0e-7
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/* ---------------------------------------------------------------------- */
PPPM::PPPM(LAMMPS *lmp, int narg, char **arg) : KSpace(lmp, narg, arg)
{
if (narg != 1) error->all("Illegal kspace_style pppm command");
precision = atof(arg[0]);
PI = 4.0*atan(1.0);
nfactors = 3;
factors = new int[nfactors];
factors[0] = 2;
factors[1] = 3;
factors[2] = 5;
MPI_Comm_rank(world,&me);
MPI_Comm_size(world,&nprocs);
density_brick = vdx_brick = vdy_brick = vdz_brick = NULL;
density_fft = NULL;
greensfn = NULL;
work1 = work2 = NULL;
vg = NULL;
fkx = fky = fkz = NULL;
buf1 = buf2 = NULL;
gf_b = NULL;
rho1d = rho_coeff = NULL;
fft1 = fft2 = NULL;
remap = NULL;
nmax = 0;
part2grid = NULL;
}
/* ----------------------------------------------------------------------
free all memory
------------------------------------------------------------------------- */
PPPM::~PPPM()
{
delete [] factors;
deallocate();
memory->destroy(part2grid);
}
/* ----------------------------------------------------------------------
called once before run
------------------------------------------------------------------------- */
void PPPM::init()
{
if (me == 0) {
if (screen) fprintf(screen,"PPPM initialization ...\n");
if (logfile) fprintf(logfile,"PPPM initialization ...\n");
}
// error check
if (domain->triclinic)
error->all("Cannot (yet) use PPPM with triclinic box");
if (domain->dimension == 2) error->all("Cannot use PPPM with 2d simulation");
if (!atom->q_flag) error->all("Kspace style requires atom attribute q");
if (slabflag == 0 && domain->nonperiodic > 0)
error->all("Cannot use nonperiodic boundaries with PPPM");
if (slabflag == 1) {
if (domain->xperiodic != 1 || domain->yperiodic != 1 ||
domain->boundary[2][0] != 1 || domain->boundary[2][1] != 1)
error->all("Incorrect boundaries with slab PPPM");
}
if (order > MAXORDER) {
char str[128];
sprintf(str,"PPPM order cannot be greater than %d",MAXORDER);
error->all(str);
}
// free all arrays previously allocated
deallocate();
// extract short-range Coulombic cutoff from pair style
qqrd2e = force->qqrd2e;
scale = 1.0;
if (force->pair == NULL)
error->all("KSpace style is incompatible with Pair style");
int itmp;
double *p_cutoff = (double *) force->pair->extract("cut_coul",itmp);
if (p_cutoff == NULL)
error->all("KSpace style is incompatible with Pair style");
cutoff = *p_cutoff;
// if kspace is TIP4P, extract TIP4P params from pair style
// bond/angle are not yet init(), so insure equilibrium request is valid
qdist = 0.0;
if (strcmp(force->kspace_style,"pppm/tip4p") == 0) {
if (force->pair == NULL)
error->all("KSpace style is incompatible with Pair style");
double *p_qdist = (double *) force->pair->extract("qdist",itmp);
int *p_typeO = (int *) force->pair->extract("typeO",itmp);
int *p_typeH = (int *) force->pair->extract("typeH",itmp);
int *p_typeA = (int *) force->pair->extract("typeA",itmp);
int *p_typeB = (int *) force->pair->extract("typeB",itmp);
if (!p_qdist || !p_typeO || !p_typeH || !p_typeA || !p_typeB)
error->all("KSpace style is incompatible with Pair style");
qdist = *p_qdist;
typeO = *p_typeO;
typeH = *p_typeH;
int typeA = *p_typeA;
int typeB = *p_typeB;
if (force->angle == NULL || force->bond == NULL)
error->all("Bond and angle potentials must be defined for TIP4P");
if (typeA < 1 || typeA > atom->nangletypes ||
force->angle->setflag[typeA] == 0)
error->all("Bad TIP4P angle type for PPPM/TIP4P");
if (typeB < 1 || typeA > atom->nbondtypes ||
force->bond->setflag[typeB] == 0)
error->all("Bad TIP4P bond type for PPPM/TIP4P");
double theta = force->angle->equilibrium_angle(typeA);
double blen = force->bond->equilibrium_distance(typeB);
alpha = qdist / (2.0 * cos(0.5*theta) * blen);
}
// compute qsum & qsqsum and warn if not charge-neutral
qsum = qsqsum = 0.0;
for (int i = 0; i < atom->nlocal; i++) {
qsum += atom->q[i];
qsqsum += atom->q[i]*atom->q[i];
}
double tmp;
MPI_Allreduce(&qsum,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
qsum = tmp;
MPI_Allreduce(&qsqsum,&tmp,1,MPI_DOUBLE,MPI_SUM,world);
qsqsum = tmp;
if (qsqsum == 0.0)
error->all("Cannot use kspace solver on system with no charge");
if (fabs(qsum) > SMALL && me == 0) {
char str[128];
sprintf(str,"System is not charge neutral, net charge = %g",qsum);
error->warning(str);
}
// setup FFT grid resolution and g_ewald
// normally one iteration thru while loop is all that is required
// if grid stencil extends beyond neighbor proc, reduce order and try again
int iteration = 0;
while (order > 0) {
if (iteration && me == 0)
error->warning("Reducing PPPM order b/c stencil extends "
"beyond neighbor processor");
iteration++;
set_grid();
if (nx_pppm >= OFFSET || ny_pppm >= OFFSET || nz_pppm >= OFFSET)
error->all("PPPM grid is too large");
// global indices of PPPM grid range from 0 to N-1
// nlo_in,nhi_in = lower/upper limits of the 3d sub-brick of
// global PPPM grid that I own without ghost cells
// for slab PPPM, assign z grid as if it were not extended
nxlo_in = comm->myloc[0]*nx_pppm / comm->procgrid[0];
nxhi_in = (comm->myloc[0]+1)*nx_pppm / comm->procgrid[0] - 1;
nylo_in = comm->myloc[1]*ny_pppm / comm->procgrid[1];
nyhi_in = (comm->myloc[1]+1)*ny_pppm / comm->procgrid[1] - 1;
nzlo_in = comm->myloc[2] *
(static_cast<int> (nz_pppm/slab_volfactor)) / comm->procgrid[2];
nzhi_in = (comm->myloc[2]+1) *
(static_cast<int> (nz_pppm/slab_volfactor)) / comm->procgrid[2] - 1;
// nlower,nupper = stencil size for mapping particles to PPPM grid
nlower = -(order-1)/2;
nupper = order/2;
// shift values for particle <-> grid mapping
// add/subtract OFFSET to avoid int(-0.75) = 0 when want it to be -1
if (order % 2) shift = OFFSET + 0.5;
else shift = OFFSET;
if (order % 2) shiftone = 0.0;
else shiftone = 0.5;
// nlo_out,nhi_out = lower/upper limits of the 3d sub-brick of
// global PPPM grid that my particles can contribute charge to
// effectively nlo_in,nhi_in + ghost cells
// nlo,nhi = global coords of grid pt to "lower left" of smallest/largest
// position a particle in my box can be at
// dist[3] = particle position bound = subbox + skin/2.0 + qdist
// qdist = offset due to TIP4P fictitious charge
// convert to triclinic if necessary
// nlo_out,nhi_out = nlo,nhi + stencil size for particle mapping
// for slab PPPM, assign z grid as if it were not extended
triclinic = domain->triclinic;
double *prd,*sublo,*subhi;
if (triclinic == 0) {
prd = domain->prd;
boxlo = domain->boxlo;
sublo = domain->sublo;
subhi = domain->subhi;
} else {
prd = domain->prd_lamda;
boxlo = domain->boxlo_lamda;
sublo = domain->sublo_lamda;
subhi = domain->subhi_lamda;
}
double xprd = prd[0];
double yprd = prd[1];
double zprd = prd[2];
double zprd_slab = zprd*slab_volfactor;
double dist[3];
double cuthalf = 0.5*neighbor->skin + qdist;
if (triclinic == 0) dist[0] = dist[1] = dist[2] = cuthalf;
else {
dist[0] = cuthalf/domain->prd[0];
dist[1] = cuthalf/domain->prd[1];
dist[2] = cuthalf/domain->prd[2];
}
int nlo,nhi;
nlo = static_cast<int> ((sublo[0]-dist[0]-boxlo[0]) *
nx_pppm/xprd + shift) - OFFSET;
nhi = static_cast<int> ((subhi[0]+dist[0]-boxlo[0]) *
nx_pppm/xprd + shift) - OFFSET;
nxlo_out = nlo + nlower;
nxhi_out = nhi + nupper;
nlo = static_cast<int> ((sublo[1]-dist[1]-boxlo[1]) *
ny_pppm/yprd + shift) - OFFSET;
nhi = static_cast<int> ((subhi[1]+dist[1]-boxlo[1]) *
ny_pppm/yprd + shift) - OFFSET;
nylo_out = nlo + nlower;
nyhi_out = nhi + nupper;
nlo = static_cast<int> ((sublo[2]-dist[2]-boxlo[2]) *
nz_pppm/zprd_slab + shift) - OFFSET;
nhi = static_cast<int> ((subhi[2]+dist[2]-boxlo[2]) *
nz_pppm/zprd_slab + shift) - OFFSET;
nzlo_out = nlo + nlower;
nzhi_out = nhi + nupper;
// for slab PPPM, change the grid boundary for processors at +z end
// to include the empty volume between periodically repeating slabs
// for slab PPPM, want charge data communicated from -z proc to +z proc,
// but not vice versa, also want field data communicated from +z proc to
// -z proc, but not vice versa
// this is accomplished by nzhi_in = nzhi_out on +z end (no ghost cells)
if (slabflag && ((comm->myloc[2]+1) == (comm->procgrid[2]))) {
nzhi_in = nz_pppm - 1;
nzhi_out = nz_pppm - 1;
}
// nlo_ghost,nhi_ghost = # of planes I will recv from 6 directions
// that overlay domain I own
// proc in that direction tells me via sendrecv()
// if no neighbor proc, value is from self since I have ghosts regardless
int nplanes;
MPI_Status status;
nplanes = nxlo_in - nxlo_out;
if (comm->procneigh[0][0] != me)
MPI_Sendrecv(&nplanes,1,MPI_INT,comm->procneigh[0][0],0,
&nxhi_ghost,1,MPI_INT,comm->procneigh[0][1],0,
world,&status);
else nxhi_ghost = nplanes;
nplanes = nxhi_out - nxhi_in;
if (comm->procneigh[0][1] != me)
MPI_Sendrecv(&nplanes,1,MPI_INT,comm->procneigh[0][1],0,
&nxlo_ghost,1,MPI_INT,comm->procneigh[0][0],
0,world,&status);
else nxlo_ghost = nplanes;
nplanes = nylo_in - nylo_out;
if (comm->procneigh[1][0] != me)
MPI_Sendrecv(&nplanes,1,MPI_INT,comm->procneigh[1][0],0,
&nyhi_ghost,1,MPI_INT,comm->procneigh[1][1],0,
world,&status);
else nyhi_ghost = nplanes;
nplanes = nyhi_out - nyhi_in;
if (comm->procneigh[1][1] != me)
MPI_Sendrecv(&nplanes,1,MPI_INT,comm->procneigh[1][1],0,
&nylo_ghost,1,MPI_INT,comm->procneigh[1][0],0,
world,&status);
else nylo_ghost = nplanes;
nplanes = nzlo_in - nzlo_out;
if (comm->procneigh[2][0] != me)
MPI_Sendrecv(&nplanes,1,MPI_INT,comm->procneigh[2][0],0,
&nzhi_ghost,1,MPI_INT,comm->procneigh[2][1],0,
world,&status);
else nzhi_ghost = nplanes;
nplanes = nzhi_out - nzhi_in;
if (comm->procneigh[2][1] != me)
MPI_Sendrecv(&nplanes,1,MPI_INT,comm->procneigh[2][1],0,
&nzlo_ghost,1,MPI_INT,comm->procneigh[2][0],0,
world,&status);
else nzlo_ghost = nplanes;
// test that ghost overlap is not bigger than my sub-domain
int flag = 0;
if (nxlo_ghost > nxhi_in-nxlo_in+1) flag = 1;
if (nxhi_ghost > nxhi_in-nxlo_in+1) flag = 1;
if (nylo_ghost > nyhi_in-nylo_in+1) flag = 1;
if (nyhi_ghost > nyhi_in-nylo_in+1) flag = 1;
if (nzlo_ghost > nzhi_in-nzlo_in+1) flag = 1;
if (nzhi_ghost > nzhi_in-nzlo_in+1) flag = 1;
int flag_all;
MPI_Allreduce(&flag,&flag_all,1,MPI_INT,MPI_SUM,world);
if (flag_all == 0) break;
order--;
}
if (order == 0) error->all("PPPM order has been reduced to 0");
// decomposition of FFT mesh
// global indices range from 0 to N-1
// proc owns entire x-dimension, clump of columns in y,z dimensions
// npey_fft,npez_fft = # of procs in y,z dims
// if nprocs is small enough, proc can own 1 or more entire xy planes,
// else proc owns 2d sub-blocks of yz plane
// me_y,me_z = which proc (0-npe_fft-1) I am in y,z dimensions
// nlo_fft,nhi_fft = lower/upper limit of the section
// of the global FFT mesh that I own
int npey_fft,npez_fft;
if (nz_pppm >= nprocs) {
npey_fft = 1;
npez_fft = nprocs;
} else procs2grid2d(nprocs,ny_pppm,nz_pppm,&npey_fft,&npez_fft);
int me_y = me % npey_fft;
int me_z = me / npey_fft;
nxlo_fft = 0;
nxhi_fft = nx_pppm - 1;
nylo_fft = me_y*ny_pppm/npey_fft;
nyhi_fft = (me_y+1)*ny_pppm/npey_fft - 1;
nzlo_fft = me_z*nz_pppm/npez_fft;
nzhi_fft = (me_z+1)*nz_pppm/npez_fft - 1;
// PPPM grid for this proc, including ghosts
ngrid = (nxhi_out-nxlo_out+1) * (nyhi_out-nylo_out+1) *
(nzhi_out-nzlo_out+1);
// FFT arrays on this proc, without ghosts
// nfft = FFT points in FFT decomposition on this proc
// nfft_brick = FFT points in 3d brick-decomposition on this proc
// nfft_both = greater of 2 values
nfft = (nxhi_fft-nxlo_fft+1) * (nyhi_fft-nylo_fft+1) *
(nzhi_fft-nzlo_fft+1);
int nfft_brick = (nxhi_in-nxlo_in+1) * (nyhi_in-nylo_in+1) *
(nzhi_in-nzlo_in+1);
nfft_both = MAX(nfft,nfft_brick);
// buffer space for use in brick2fft and fillbrick
// idel = max # of ghost planes to send or recv in +/- dir of each dim
// nx,ny,nz = owned planes (including ghosts) in each dim
// nxx,nyy,nzz = max # of grid cells to send in each dim
// nbuf = max in any dim, augment by 3x for components of vd_xyz in fillbrick
int idelx,idely,idelz,nx,ny,nz,nxx,nyy,nzz;
idelx = MAX(nxlo_ghost,nxhi_ghost);
idelx = MAX(idelx,nxhi_out-nxhi_in);
idelx = MAX(idelx,nxlo_in-nxlo_out);
idely = MAX(nylo_ghost,nyhi_ghost);
idely = MAX(idely,nyhi_out-nyhi_in);
idely = MAX(idely,nylo_in-nylo_out);
idelz = MAX(nzlo_ghost,nzhi_ghost);
idelz = MAX(idelz,nzhi_out-nzhi_in);
idelz = MAX(idelz,nzlo_in-nzlo_out);
nx = nxhi_out - nxlo_out + 1;
ny = nyhi_out - nylo_out + 1;
nz = nzhi_out - nzlo_out + 1;
nxx = idelx * ny * nz;
nyy = idely * nx * nz;
nzz = idelz * nx * ny;
nbuf = MAX(nxx,nyy);
nbuf = MAX(nbuf,nzz);
nbuf *= 3;
// print stats
int ngrid_max,nfft_both_max,nbuf_max;
MPI_Allreduce(&ngrid,&ngrid_max,1,MPI_INT,MPI_MAX,world);
MPI_Allreduce(&nfft_both,&nfft_both_max,1,MPI_INT,MPI_MAX,world);
MPI_Allreduce(&nbuf,&nbuf_max,1,MPI_INT,MPI_MAX,world);
if (me == 0) {
if (screen) fprintf(screen," brick FFT buffer size/proc = %d %d %d\n",
ngrid_max,nfft_both_max,nbuf_max);
if (logfile) fprintf(logfile," brick FFT buffer size/proc = %d %d %d\n",
ngrid_max,nfft_both_max,nbuf_max);
}
// allocate K-space dependent memory
allocate();
// pre-compute Green's function denomiator expansion
// pre-compute 1d charge distribution coefficients
compute_gf_denom();
compute_rho_coeff();
}
/* ----------------------------------------------------------------------
adjust PPPM coeffs, called initially and whenever volume has changed
------------------------------------------------------------------------- */
void PPPM::setup()
{
int i,j,k,l,m,n;
double *prd;
// volume-dependent factors
// adjust z dimension for 2d slab PPPM
// z dimension for 3d PPPM is zprd since slab_volfactor = 1.0
if (triclinic == 0) prd = domain->prd;
else prd = domain->prd_lamda;
double xprd = prd[0];
double yprd = prd[1];
double zprd = prd[2];
double zprd_slab = zprd*slab_volfactor;
volume = xprd * yprd * zprd_slab;
delxinv = nx_pppm/xprd;
delyinv = ny_pppm/yprd;
delzinv = nz_pppm/zprd_slab;
delvolinv = delxinv*delyinv*delzinv;
double unitkx = (2.0*PI/xprd);
double unitky = (2.0*PI/yprd);
double unitkz = (2.0*PI/zprd_slab);
// fkx,fky,fkz for my FFT grid pts
double per;
for (i = nxlo_fft; i <= nxhi_fft; i++) {
per = i - nx_pppm*(2*i/nx_pppm);
fkx[i] = unitkx*per;
}
for (i = nylo_fft; i <= nyhi_fft; i++) {
per = i - ny_pppm*(2*i/ny_pppm);
fky[i] = unitky*per;
}
for (i = nzlo_fft; i <= nzhi_fft; i++) {
per = i - nz_pppm*(2*i/nz_pppm);
fkz[i] = unitkz*per;
}
// virial coefficients
double sqk,vterm;
n = 0;
for (k = nzlo_fft; k <= nzhi_fft; k++) {
for (j = nylo_fft; j <= nyhi_fft; j++) {
for (i = nxlo_fft; i <= nxhi_fft; i++) {
sqk = fkx[i]*fkx[i] + fky[j]*fky[j] + fkz[k]*fkz[k];
if (sqk == 0.0) {
vg[n][0] = 0.0;
vg[n][1] = 0.0;
vg[n][2] = 0.0;
vg[n][3] = 0.0;
vg[n][4] = 0.0;
vg[n][5] = 0.0;
} else {
vterm = -2.0 * (1.0/sqk + 0.25/(g_ewald*g_ewald));
vg[n][0] = 1.0 + vterm*fkx[i]*fkx[i];
vg[n][1] = 1.0 + vterm*fky[j]*fky[j];
vg[n][2] = 1.0 + vterm*fkz[k]*fkz[k];
vg[n][3] = vterm*fkx[i]*fky[j];
vg[n][4] = vterm*fkx[i]*fkz[k];
vg[n][5] = vterm*fky[j]*fkz[k];
}
n++;
}
}
}
// modified (Hockney-Eastwood) Coulomb Green's function
int nx,ny,nz,kper,lper,mper;
double snx,sny,snz,snx2,sny2,snz2;
double argx,argy,argz,wx,wy,wz,sx,sy,sz,qx,qy,qz;
double sum1,dot1,dot2;
double numerator,denominator;
int nbx = static_cast<int> ((g_ewald*xprd/(PI*nx_pppm)) *
pow(-log(EPS_HOC),0.25));
int nby = static_cast<int> ((g_ewald*yprd/(PI*ny_pppm)) *
pow(-log(EPS_HOC),0.25));
int nbz = static_cast<int> ((g_ewald*zprd_slab/(PI*nz_pppm)) *
pow(-log(EPS_HOC),0.25));
double form = 1.0;
n = 0;
for (m = nzlo_fft; m <= nzhi_fft; m++) {
mper = m - nz_pppm*(2*m/nz_pppm);
snz = sin(0.5*unitkz*mper*zprd_slab/nz_pppm);
snz2 = snz*snz;
for (l = nylo_fft; l <= nyhi_fft; l++) {
lper = l - ny_pppm*(2*l/ny_pppm);
sny = sin(0.5*unitky*lper*yprd/ny_pppm);
sny2 = sny*sny;
for (k = nxlo_fft; k <= nxhi_fft; k++) {
kper = k - nx_pppm*(2*k/nx_pppm);
snx = sin(0.5*unitkx*kper*xprd/nx_pppm);
snx2 = snx*snx;
sqk = pow(unitkx*kper,2.0) + pow(unitky*lper,2.0) +
pow(unitkz*mper,2.0);
if (sqk != 0.0) {
numerator = form*12.5663706/sqk;
denominator = gf_denom(snx2,sny2,snz2);
sum1 = 0.0;
for (nx = -nbx; nx <= nbx; nx++) {
qx = unitkx*(kper+nx_pppm*nx);
sx = exp(-.25*pow(qx/g_ewald,2.0));
wx = 1.0;
argx = 0.5*qx*xprd/nx_pppm;
if (argx != 0.0) wx = pow(sin(argx)/argx,order);
for (ny = -nby; ny <= nby; ny++) {
qy = unitky*(lper+ny_pppm*ny);
sy = exp(-.25*pow(qy/g_ewald,2.0));
wy = 1.0;
argy = 0.5*qy*yprd/ny_pppm;
if (argy != 0.0) wy = pow(sin(argy)/argy,order);
for (nz = -nbz; nz <= nbz; nz++) {
qz = unitkz*(mper+nz_pppm*nz);
sz = exp(-.25*pow(qz/g_ewald,2.0));
wz = 1.0;
argz = 0.5*qz*zprd_slab/nz_pppm;
if (argz != 0.0) wz = pow(sin(argz)/argz,order);
dot1 = unitkx*kper*qx + unitky*lper*qy + unitkz*mper*qz;
dot2 = qx*qx+qy*qy+qz*qz;
sum1 += (dot1/dot2) * sx*sy*sz * pow(wx*wy*wz,2.0);
}
}
}
greensfn[n++] = numerator*sum1/denominator;
} else greensfn[n++] = 0.0;
}
}
}
}
/* ----------------------------------------------------------------------
compute the PPPM long-range force, energy, virial
------------------------------------------------------------------------- */
void PPPM::compute(int eflag, int vflag)
{
int i;
// convert atoms from box to lamda coords
if (triclinic == 0) boxlo = domain->boxlo;
else {
boxlo = domain->boxlo_lamda;
domain->x2lamda(atom->nlocal);
}
// extend size of per-atom arrays if necessary
if (atom->nlocal > nmax) {
memory->destroy(part2grid);
nmax = atom->nmax;
memory->create(part2grid,nmax,3,"pppm:part2grid");
}
energy = 0.0;
if (vflag) for (i = 0; i < 6; i++) virial[i] = 0.0;
// find grid points for all my particles
// map my particle charge onto my local 3d density grid
particle_map();
make_rho();
// all procs communicate density values from their ghost cells
// to fully sum contribution in their 3d bricks
// remap from 3d decomposition to FFT decomposition
brick2fft();
// compute potential gradient on my FFT grid and
// portion of e_long on this proc's FFT grid
// return gradients (electric fields) in 3d brick decomposition
poisson(eflag,vflag);
// all procs communicate E-field values to fill ghost cells
// surrounding their 3d bricks
fillbrick();
// calculate the force on my particles
fieldforce();
// sum energy across procs and add in volume-dependent term
if (eflag) {
double energy_all;
MPI_Allreduce(&energy,&energy_all,1,MPI_DOUBLE,MPI_SUM,world);
energy = energy_all;
energy *= 0.5*volume;
energy -= g_ewald*qsqsum/1.772453851 +
0.5*PI*qsum*qsum / (g_ewald*g_ewald*volume);
energy *= qqrd2e*scale;
}
// sum virial across procs
if (vflag) {
double virial_all[6];
MPI_Allreduce(virial,virial_all,6,MPI_DOUBLE,MPI_SUM,world);
for (i = 0; i < 6; i++) virial[i] = 0.5*qqrd2e*scale*volume*virial_all[i];
}
// 2d slab correction
if (slabflag) slabcorr(eflag);
// convert atoms back from lamda to box coords
if (triclinic) domain->lamda2x(atom->nlocal);
}
/* ----------------------------------------------------------------------
allocate memory that depends on # of K-vectors and order
------------------------------------------------------------------------- */
void PPPM::allocate()
{
memory->create3d_offset(density_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out,
nxlo_out,nxhi_out,"pppm:density_brick");
memory->create3d_offset(vdx_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out,
nxlo_out,nxhi_out,"pppm:vdx_brick");
memory->create3d_offset(vdy_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out,
nxlo_out,nxhi_out,"pppm:vdy_brick");
memory->create3d_offset(vdz_brick,nzlo_out,nzhi_out,nylo_out,nyhi_out,
nxlo_out,nxhi_out,"pppm:vdz_brick");
memory->create(density_fft,nfft_both,"pppm:density_fft");
memory->create(greensfn,nfft_both,"pppm:greensfn");
memory->create(work1,2*nfft_both,"pppm:work1");
memory->create(work2,2*nfft_both,"pppm:work2");
memory->create(vg,nfft_both,6,"pppm:vg");
memory->create1d_offset(fkx,nxlo_fft,nxhi_fft,"pppm:fkx");
memory->create1d_offset(fky,nylo_fft,nyhi_fft,"pppm:fky");
memory->create1d_offset(fkz,nzlo_fft,nzhi_fft,"pppm:fkz");
memory->create(buf1,nbuf,"pppm:buf1");
memory->create(buf2,nbuf,"pppm:buf2");
// summation coeffs
gf_b = new double[order];
memory->create2d_offset(rho1d,3,-order/2,order/2,"pppm:rho1d");
memory->create2d_offset(rho_coeff,order,(1-order)/2,order/2,"pppm:rho_coeff");
// create 2 FFTs and a Remap
// 1st FFT keeps data in FFT decompostion
// 2nd FFT returns data in 3d brick decomposition
// remap takes data from 3d brick to FFT decomposition
int tmp;
fft1 = new FFT3d(lmp,world,nx_pppm,ny_pppm,nz_pppm,
nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft,
nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft,
0,0,&tmp);
fft2 = new FFT3d(lmp,world,nx_pppm,ny_pppm,nz_pppm,
nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft,
nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in,
0,0,&tmp);
remap = new Remap(lmp,world,
nxlo_in,nxhi_in,nylo_in,nyhi_in,nzlo_in,nzhi_in,
nxlo_fft,nxhi_fft,nylo_fft,nyhi_fft,nzlo_fft,nzhi_fft,
1,0,0,2);
}
/* ----------------------------------------------------------------------
deallocate memory that depends on # of K-vectors and order
------------------------------------------------------------------------- */
void PPPM::deallocate()
{
memory->destroy3d_offset(density_brick,nzlo_out,nylo_out,nxlo_out);
memory->destroy3d_offset(vdx_brick,nzlo_out,nylo_out,nxlo_out);
memory->destroy3d_offset(vdy_brick,nzlo_out,nylo_out,nxlo_out);
memory->destroy3d_offset(vdz_brick,nzlo_out,nylo_out,nxlo_out);
memory->destroy(density_fft);
memory->destroy(greensfn);
memory->destroy(work1);
memory->destroy(work2);
memory->destroy(vg);
memory->destroy1d_offset(fkx,nxlo_fft);
memory->destroy1d_offset(fky,nylo_fft);
memory->destroy1d_offset(fkz,nzlo_fft);
memory->destroy(buf1);
memory->destroy(buf2);
delete [] gf_b;
memory->destroy2d_offset(rho1d,-order/2);
memory->destroy2d_offset(rho_coeff,(1-order)/2);
delete fft1;
delete fft2;
delete remap;
}
/* ----------------------------------------------------------------------
set size of FFT grid (nx,ny,nz_pppm) and g_ewald
------------------------------------------------------------------------- */
void PPPM::set_grid()
{
// see JCP 109, pg 7698 for derivation of coefficients
// higher order coefficients may be computed if needed
double **acons;
memory->create(acons,8,7,"pppm:acons");
acons[1][0] = 2.0 / 3.0;
acons[2][0] = 1.0 / 50.0;
acons[2][1] = 5.0 / 294.0;
acons[3][0] = 1.0 / 588.0;
acons[3][1] = 7.0 / 1440.0;
acons[3][2] = 21.0 / 3872.0;
acons[4][0] = 1.0 / 4320.0;
acons[4][1] = 3.0 / 1936.0;
acons[4][2] = 7601.0 / 2271360.0;
acons[4][3] = 143.0 / 28800.0;
acons[5][0] = 1.0 / 23232.0;
acons[5][1] = 7601.0 / 13628160.0;
acons[5][2] = 143.0 / 69120.0;
acons[5][3] = 517231.0 / 106536960.0;
acons[5][4] = 106640677.0 / 11737571328.0;
acons[6][0] = 691.0 / 68140800.0;
acons[6][1] = 13.0 / 57600.0;
acons[6][2] = 47021.0 / 35512320.0;
acons[6][3] = 9694607.0 / 2095994880.0;
acons[6][4] = 733191589.0 / 59609088000.0;
acons[6][5] = 326190917.0 / 11700633600.0;
acons[7][0] = 1.0 / 345600.0;
acons[7][1] = 3617.0 / 35512320.0;
acons[7][2] = 745739.0 / 838397952.0;
acons[7][3] = 56399353.0 / 12773376000.0;
acons[7][4] = 25091609.0 / 1560084480.0;
acons[7][5] = 1755948832039.0 / 36229939200000.0;
acons[7][6] = 4887769399.0 / 37838389248.0;
double q2 = qsqsum / force->dielectric;
bigint natoms = atom->natoms;
// use xprd,yprd,zprd even if triclinic so grid size is the same
// adjust z dimension for 2d slab PPPM
// 3d PPPM just uses zprd since slab_volfactor = 1.0
double xprd = domain->xprd;
double yprd = domain->yprd;
double zprd = domain->zprd;
double zprd_slab = zprd*slab_volfactor;
// make initial g_ewald estimate
// based on desired error and real space cutoff
// fluid-occupied volume used to estimate real-space error
// zprd used rather than zprd_slab
double hx,hy,hz;
if (!gewaldflag)
g_ewald = sqrt(-log(precision*sqrt(natoms*cutoff*xprd*yprd*zprd) /
(2.0*q2))) / cutoff;
// set optimal nx_pppm,ny_pppm,nz_pppm based on order and precision
// nz_pppm uses extended zprd_slab instead of zprd
// h = 1/g_ewald is upper bound on h such that h*g_ewald <= 1
// reduce it until precision target is met
if (!gridflag) {
double err;
hx = hy = hz = 1/g_ewald;
nx_pppm = static_cast<int> (xprd/hx + 1);
ny_pppm = static_cast<int> (yprd/hy + 1);
nz_pppm = static_cast<int> (zprd_slab/hz + 1);
err = rms(hx,xprd,natoms,q2,acons);
while (err > precision) {
err = rms(hx,xprd,natoms,q2,acons);
nx_pppm++;
hx = xprd/nx_pppm;
}
err = rms(hy,yprd,natoms,q2,acons);
while (err > precision) {
err = rms(hy,yprd,natoms,q2,acons);
ny_pppm++;
hy = yprd/ny_pppm;
}
err = rms(hz,zprd_slab,natoms,q2,acons);
while (err > precision) {
err = rms(hz,zprd_slab,natoms,q2,acons);
nz_pppm++;
hz = zprd_slab/nz_pppm;
}
}
// boost grid size until it is factorable
while (!factorable(nx_pppm)) nx_pppm++;
while (!factorable(ny_pppm)) ny_pppm++;
while (!factorable(nz_pppm)) nz_pppm++;
// adjust g_ewald for new grid size
hx = xprd/nx_pppm;
hy = yprd/ny_pppm;
hz = zprd_slab/nz_pppm;
if (!gewaldflag) {
double gew1,gew2,dgew,f,fmid,hmin,rtb;
int ncount;
gew1 = 0.0;
g_ewald = gew1;
f = diffpr(hx,hy,hz,q2,acons);
hmin = MIN(hx,MIN(hy,hz));
gew2 = 10/hmin;
g_ewald = gew2;
fmid = diffpr(hx,hy,hz,q2,acons);
if (f*fmid >= 0.0) error->all("Cannot compute PPPM G");
rtb = f < 0.0 ? (dgew=gew2-gew1,gew1) : (dgew=gew1-gew2,gew2);
ncount = 0;
while (fabs(dgew) > SMALL && fmid != 0.0) {
dgew *= 0.5;
g_ewald = rtb + dgew;
fmid = diffpr(hx,hy,hz,q2,acons);
if (fmid <= 0.0) rtb = g_ewald;
ncount++;
if (ncount > LARGE) error->all("Cannot compute PPPM G");
}
}
// final RMS precision
double lprx = rms(hx,xprd,natoms,q2,acons);
double lpry = rms(hy,yprd,natoms,q2,acons);
double lprz = rms(hz,zprd_slab,natoms,q2,acons);
double lpr = sqrt(lprx*lprx + lpry*lpry + lprz*lprz) / sqrt(3.0);
double spr = 2.0*q2 * exp(-g_ewald*g_ewald*cutoff*cutoff) /
sqrt(natoms*cutoff*xprd*yprd*zprd_slab);
// free local memory
memory->destroy(acons);
// print info
if (me == 0) {
if (screen) {
fprintf(screen," G vector = %g\n",g_ewald);
fprintf(screen," grid = %d %d %d\n",nx_pppm,ny_pppm,nz_pppm);
fprintf(screen," stencil order = %d\n",order);
fprintf(screen," RMS precision = %g\n",MAX(lpr,spr));
}
if (logfile) {
fprintf(logfile," G vector = %g\n",g_ewald);
fprintf(logfile," grid = %d %d %d\n",nx_pppm,ny_pppm,nz_pppm);
fprintf(logfile," stencil order = %d\n",order);
fprintf(logfile," RMS precision = %g\n",MAX(lpr,spr));
}
}
}
/* ----------------------------------------------------------------------
check if all factors of n are in list of factors
return 1 if yes, 0 if no
------------------------------------------------------------------------- */
int PPPM::factorable(int n)
{
int i;
while (n > 1) {
for (i = 0; i < nfactors; i++) {
if (n % factors[i] == 0) {
n /= factors[i];
break;
}
}
if (i == nfactors) return 0;
}
return 1;
}
/* ----------------------------------------------------------------------
compute RMS precision for a dimension
------------------------------------------------------------------------- */
double PPPM::rms(double h, double prd, bigint natoms,
double q2, double **acons)
{
double sum = 0.0;
for (int m = 0; m < order; m++)
sum += acons[order][m] * pow(h*g_ewald,2.0*m);
double value = q2 * pow(h*g_ewald,order) *
sqrt(g_ewald*prd*sqrt(2.0*PI)*sum/natoms) / (prd*prd);
return value;
}
/* ----------------------------------------------------------------------
compute difference in real-space and kspace RMS precision
------------------------------------------------------------------------- */
double PPPM::diffpr(double hx, double hy, double hz, double q2, double **acons)
{
double lprx,lpry,lprz,kspace_prec,real_prec;
double xprd = domain->xprd;
double yprd = domain->yprd;
double zprd = domain->zprd;
bigint natoms = atom->natoms;
lprx = rms(hx,xprd,natoms,q2,acons);
lpry = rms(hy,yprd,natoms,q2,acons);
lprz = rms(hz,zprd*slab_volfactor,natoms,q2,acons);
kspace_prec = sqrt(lprx*lprx + lpry*lpry + lprz*lprz) / sqrt(3.0);
real_prec = 2.0*q2 * exp(-g_ewald*g_ewald*cutoff*cutoff) /
sqrt(natoms*cutoff*xprd*yprd*zprd);
double value = kspace_prec - real_prec;
return value;
}
/* ----------------------------------------------------------------------
denominator for Hockney-Eastwood Green's function
of x,y,z = sin(kx*deltax/2), etc
inf n-1
S(n,k) = Sum W(k+pi*j)**2 = Sum b(l)*(z*z)**l
j=-inf l=0
= -(z*z)**n /(2n-1)! * (d/dx)**(2n-1) cot(x) at z = sin(x)
gf_b = denominator expansion coeffs
------------------------------------------------------------------------- */
double PPPM::gf_denom(double x, double y, double z)
{
double sx,sy,sz;
sz = sy = sx = 0.0;
for (int l = order-1; l >= 0; l--) {
sx = gf_b[l] + sx*x;
sy = gf_b[l] + sy*y;
sz = gf_b[l] + sz*z;
}
double s = sx*sy*sz;
return s*s;
}
/* ----------------------------------------------------------------------
pre-compute Green's function denominator expansion coeffs, Gamma(2n)
------------------------------------------------------------------------- */
void PPPM::compute_gf_denom()
{
int k,l,m;
for (l = 1; l < order; l++) gf_b[l] = 0.0;
gf_b[0] = 1.0;
for (m = 1; m < order; m++) {
for (l = m; l > 0; l--)
gf_b[l] = 4.0 * (gf_b[l]*(l-m)*(l-m-0.5)-gf_b[l-1]*(l-m-1)*(l-m-1));
gf_b[0] = 4.0 * (gf_b[0]*(l-m)*(l-m-0.5));
}
int ifact = 1;
for (k = 1; k < 2*order; k++) ifact *= k;
double gaminv = 1.0/ifact;
for (l = 0; l < order; l++) gf_b[l] *= gaminv;
}
/* ----------------------------------------------------------------------
ghost-swap to accumulate full density in brick decomposition
remap density from 3d brick decomposition to FFT decomposition
------------------------------------------------------------------------- */
void PPPM::brick2fft()
{
int i,n,ix,iy,iz;
MPI_Request request;
MPI_Status status;
// pack my ghosts for +x processor
// pass data to self or +x processor
// unpack and sum recv data into my real cells
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy <= nyhi_out; iy++)
for (ix = nxhi_in+1; ix <= nxhi_out; ix++)
buf1[n++] = density_brick[iz][iy][ix];
if (comm->procneigh[0][1] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[0][0],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[0][1],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy <= nyhi_out; iy++)
for (ix = nxlo_in; ix < nxlo_in+nxlo_ghost; ix++)
density_brick[iz][iy][ix] += buf2[n++];
// pack my ghosts for -x processor
// pass data to self or -x processor
// unpack and sum recv data into my real cells
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy <= nyhi_out; iy++)
for (ix = nxlo_out; ix < nxlo_in; ix++)
buf1[n++] = density_brick[iz][iy][ix];
if (comm->procneigh[0][0] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[0][1],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[0][0],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy <= nyhi_out; iy++)
for (ix = nxhi_in-nxhi_ghost+1; ix <= nxhi_in; ix++)
density_brick[iz][iy][ix] += buf2[n++];
// pack my ghosts for +y processor
// pass data to self or +y processor
// unpack and sum recv data into my real cells
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nyhi_in+1; iy <= nyhi_out; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
buf1[n++] = density_brick[iz][iy][ix];
if (comm->procneigh[1][1] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[1][0],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[1][1],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_in; iy < nylo_in+nylo_ghost; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
density_brick[iz][iy][ix] += buf2[n++];
// pack my ghosts for -y processor
// pass data to self or -y processor
// unpack and sum recv data into my real cells
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy < nylo_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
buf1[n++] = density_brick[iz][iy][ix];
if (comm->procneigh[1][0] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[1][1],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[1][0],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nyhi_in-nyhi_ghost+1; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
density_brick[iz][iy][ix] += buf2[n++];
// pack my ghosts for +z processor
// pass data to self or +z processor
// unpack and sum recv data into my real cells
n = 0;
for (iz = nzhi_in+1; iz <= nzhi_out; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
buf1[n++] = density_brick[iz][iy][ix];
if (comm->procneigh[2][1] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[2][0],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[2][1],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_in; iz < nzlo_in+nzlo_ghost; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
density_brick[iz][iy][ix] += buf2[n++];
// pack my ghosts for -z processor
// pass data to self or -z processor
// unpack and sum recv data into my real cells
n = 0;
for (iz = nzlo_out; iz < nzlo_in; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
buf1[n++] = density_brick[iz][iy][ix];
if (comm->procneigh[2][0] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[2][1],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[2][0],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzhi_in-nzhi_ghost+1; iz <= nzhi_in; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
density_brick[iz][iy][ix] += buf2[n++];
// remap from 3d brick decomposition to FFT decomposition
// copy grabs inner portion of density from 3d brick
// remap could be done as pre-stage of FFT,
// but this works optimally on only double values, not complex values
n = 0;
for (iz = nzlo_in; iz <= nzhi_in; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++)
density_fft[n++] = density_brick[iz][iy][ix];
remap->perform(density_fft,density_fft,work1);
}
/* ----------------------------------------------------------------------
ghost-swap to fill ghost cells of my brick with field values
------------------------------------------------------------------------- */
void PPPM::fillbrick()
{
int i,n,ix,iy,iz;
MPI_Request request;
MPI_Status status;
// pack my real cells for +z processor
// pass data to self or +z processor
// unpack and sum recv data into my ghost cells
n = 0;
for (iz = nzhi_in-nzhi_ghost+1; iz <= nzhi_in; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
buf1[n++] = vdx_brick[iz][iy][ix];
buf1[n++] = vdy_brick[iz][iy][ix];
buf1[n++] = vdz_brick[iz][iy][ix];
}
if (comm->procneigh[2][1] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[2][0],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[2][1],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_out; iz < nzlo_in; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
vdx_brick[iz][iy][ix] = buf2[n++];
vdy_brick[iz][iy][ix] = buf2[n++];
vdz_brick[iz][iy][ix] = buf2[n++];
}
// pack my real cells for -z processor
// pass data to self or -z processor
// unpack and sum recv data into my ghost cells
n = 0;
for (iz = nzlo_in; iz < nzlo_in+nzlo_ghost; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
buf1[n++] = vdx_brick[iz][iy][ix];
buf1[n++] = vdy_brick[iz][iy][ix];
buf1[n++] = vdz_brick[iz][iy][ix];
}
if (comm->procneigh[2][0] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[2][1],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[2][0],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzhi_in+1; iz <= nzhi_out; iz++)
for (iy = nylo_in; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
vdx_brick[iz][iy][ix] = buf2[n++];
vdy_brick[iz][iy][ix] = buf2[n++];
vdz_brick[iz][iy][ix] = buf2[n++];
}
// pack my real cells for +y processor
// pass data to self or +y processor
// unpack and sum recv data into my ghost cells
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nyhi_in-nyhi_ghost+1; iy <= nyhi_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
buf1[n++] = vdx_brick[iz][iy][ix];
buf1[n++] = vdy_brick[iz][iy][ix];
buf1[n++] = vdz_brick[iz][iy][ix];
}
if (comm->procneigh[1][1] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[1][0],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[1][1],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy < nylo_in; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
vdx_brick[iz][iy][ix] = buf2[n++];
vdy_brick[iz][iy][ix] = buf2[n++];
vdz_brick[iz][iy][ix] = buf2[n++];
}
// pack my real cells for -y processor
// pass data to self or -y processor
// unpack and sum recv data into my ghost cells
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_in; iy < nylo_in+nylo_ghost; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
buf1[n++] = vdx_brick[iz][iy][ix];
buf1[n++] = vdy_brick[iz][iy][ix];
buf1[n++] = vdz_brick[iz][iy][ix];
}
if (comm->procneigh[1][0] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[1][1],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[1][0],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nyhi_in+1; iy <= nyhi_out; iy++)
for (ix = nxlo_in; ix <= nxhi_in; ix++) {
vdx_brick[iz][iy][ix] = buf2[n++];
vdy_brick[iz][iy][ix] = buf2[n++];
vdz_brick[iz][iy][ix] = buf2[n++];
}
// pack my real cells for +x processor
// pass data to self or +x processor
// unpack and sum recv data into my ghost cells
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy <= nyhi_out; iy++)
for (ix = nxhi_in-nxhi_ghost+1; ix <= nxhi_in; ix++) {
buf1[n++] = vdx_brick[iz][iy][ix];
buf1[n++] = vdy_brick[iz][iy][ix];
buf1[n++] = vdz_brick[iz][iy][ix];
}
if (comm->procneigh[0][1] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[0][0],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[0][1],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy <= nyhi_out; iy++)
for (ix = nxlo_out; ix < nxlo_in; ix++) {
vdx_brick[iz][iy][ix] = buf2[n++];
vdy_brick[iz][iy][ix] = buf2[n++];
vdz_brick[iz][iy][ix] = buf2[n++];
}
// pack my real cells for -x processor
// pass data to self or -x processor
// unpack and sum recv data into my ghost cells
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy <= nyhi_out; iy++)
for (ix = nxlo_in; ix < nxlo_in+nxlo_ghost; ix++) {
buf1[n++] = vdx_brick[iz][iy][ix];
buf1[n++] = vdy_brick[iz][iy][ix];
buf1[n++] = vdz_brick[iz][iy][ix];
}
if (comm->procneigh[0][0] == me)
for (i = 0; i < n; i++) buf2[i] = buf1[i];
else {
MPI_Irecv(buf2,nbuf,MPI_DOUBLE,comm->procneigh[0][1],0,world,&request);
MPI_Send(buf1,n,MPI_DOUBLE,comm->procneigh[0][0],0,world);
MPI_Wait(&request,&status);
}
n = 0;
for (iz = nzlo_out; iz <= nzhi_out; iz++)
for (iy = nylo_out; iy <= nyhi_out; iy++)
for (ix = nxhi_in+1; ix <= nxhi_out; ix++) {
vdx_brick[iz][iy][ix] = buf2[n++];
vdy_brick[iz][iy][ix] = buf2[n++];
vdz_brick[iz][iy][ix] = buf2[n++];
}
}
/* ----------------------------------------------------------------------
find center grid pt for each of my particles
check that full stencil for the particle will fit in my 3d brick
store central grid pt indices in part2grid array
------------------------------------------------------------------------- */
void PPPM::particle_map()
{
int nx,ny,nz;
double **x = atom->x;
int nlocal = atom->nlocal;
int flag = 0;
for (int i = 0; i < nlocal; i++) {
// (nx,ny,nz) = global coords of grid pt to "lower left" of charge
// current particle coord can be outside global and local box
// add/subtract OFFSET to avoid int(-0.75) = 0 when want it to be -1
nx = static_cast<int> ((x[i][0]-boxlo[0])*delxinv+shift) - OFFSET;
ny = static_cast<int> ((x[i][1]-boxlo[1])*delyinv+shift) - OFFSET;
nz = static_cast<int> ((x[i][2]-boxlo[2])*delzinv+shift) - OFFSET;
part2grid[i][0] = nx;
part2grid[i][1] = ny;
part2grid[i][2] = nz;
// check that entire stencil around nx,ny,nz will fit in my 3d brick
if (nx+nlower < nxlo_out || nx+nupper > nxhi_out ||
ny+nlower < nylo_out || ny+nupper > nyhi_out ||
nz+nlower < nzlo_out || nz+nupper > nzhi_out) flag++;
}
int flag_all;
MPI_Allreduce(&flag,&flag_all,1,MPI_INT,MPI_SUM,world);
if (flag_all) error->all("Out of range atoms - cannot compute PPPM");
}
/* ----------------------------------------------------------------------
create discretized "density" on section of global grid due to my particles
density(x,y,z) = charge "density" at grid points of my 3d brick
(nxlo:nxhi,nylo:nyhi,nzlo:nzhi) is extent of my brick (including ghosts)
in global grid
------------------------------------------------------------------------- */
void PPPM::make_rho()
{
int i,l,m,n,nx,ny,nz,mx,my,mz;
double dx,dy,dz,x0,y0,z0;
// clear 3d density array
double *vec = &density_brick[nzlo_out][nylo_out][nxlo_out];
for (i = 0; i < ngrid; i++) vec[i] = 0.0;
// loop over my charges, add their contribution to nearby grid points
// (nx,ny,nz) = global coords of grid pt to "lower left" of charge
// (dx,dy,dz) = distance to "lower left" grid pt
// (mx,my,mz) = global coords of moving stencil pt
double *q = atom->q;
double **x = atom->x;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++) {
nx = part2grid[i][0];
ny = part2grid[i][1];
nz = part2grid[i][2];
dx = nx+shiftone - (x[i][0]-boxlo[0])*delxinv;
dy = ny+shiftone - (x[i][1]-boxlo[1])*delyinv;
dz = nz+shiftone - (x[i][2]-boxlo[2])*delzinv;
compute_rho1d(dx,dy,dz);
z0 = delvolinv * q[i];
for (n = nlower; n <= nupper; n++) {
mz = n+nz;
y0 = z0*rho1d[2][n];
for (m = nlower; m <= nupper; m++) {
my = m+ny;
x0 = y0*rho1d[1][m];
for (l = nlower; l <= nupper; l++) {
mx = l+nx;
density_brick[mz][my][mx] += x0*rho1d[0][l];
}
}
}
}
}
/* ----------------------------------------------------------------------
FFT-based Poisson solver
------------------------------------------------------------------------- */
void PPPM::poisson(int eflag, int vflag)
{
int i,j,k,n;
double eng;
// transform charge density (r -> k)
n = 0;
for (i = 0; i < nfft; i++) {
work1[n++] = density_fft[i];
work1[n++] = 0.0;
}
fft1->compute(work1,work1,1);
// if requested, compute energy and virial contribution
double scaleinv = 1.0/(nx_pppm*ny_pppm*nz_pppm);
double s2 = scaleinv*scaleinv;
if (eflag || vflag) {
if (vflag) {
n = 0;
for (i = 0; i < nfft; i++) {
eng = s2 * greensfn[i] * (work1[n]*work1[n] + work1[n+1]*work1[n+1]);
for (j = 0; j < 6; j++) virial[j] += eng*vg[i][j];
energy += eng;
n += 2;
}
} else {
n = 0;
for (i = 0; i < nfft; i++) {
energy +=
s2 * greensfn[i] * (work1[n]*work1[n] + work1[n+1]*work1[n+1]);
n += 2;
}
}
}
// scale by 1/total-grid-pts to get rho(k)
// multiply by Green's function to get V(k)
n = 0;
for (i = 0; i < nfft; i++) {
work1[n++] *= scaleinv * greensfn[i];
work1[n++] *= scaleinv * greensfn[i];
}
// compute gradients of V(r) in each of 3 dims by transformimg -ik*V(k)
// FFT leaves data in 3d brick decomposition
// copy it into inner portion of vdx,vdy,vdz arrays
// x direction gradient
n = 0;
for (k = nzlo_fft; k <= nzhi_fft; k++)
for (j = nylo_fft; j <= nyhi_fft; j++)
for (i = nxlo_fft; i <= nxhi_fft; i++) {
work2[n] = fkx[i]*work1[n+1];
work2[n+1] = -fkx[i]*work1[n];
n += 2;
}
fft2->compute(work2,work2,-1);
n = 0;
for (k = nzlo_in; k <= nzhi_in; k++)
for (j = nylo_in; j <= nyhi_in; j++)
for (i = nxlo_in; i <= nxhi_in; i++) {
vdx_brick[k][j][i] = work2[n];
n += 2;
}
// y direction gradient
n = 0;
for (k = nzlo_fft; k <= nzhi_fft; k++)
for (j = nylo_fft; j <= nyhi_fft; j++)
for (i = nxlo_fft; i <= nxhi_fft; i++) {
work2[n] = fky[j]*work1[n+1];
work2[n+1] = -fky[j]*work1[n];
n += 2;
}
fft2->compute(work2,work2,-1);
n = 0;
for (k = nzlo_in; k <= nzhi_in; k++)
for (j = nylo_in; j <= nyhi_in; j++)
for (i = nxlo_in; i <= nxhi_in; i++) {
vdy_brick[k][j][i] = work2[n];
n += 2;
}
// z direction gradient
n = 0;
for (k = nzlo_fft; k <= nzhi_fft; k++)
for (j = nylo_fft; j <= nyhi_fft; j++)
for (i = nxlo_fft; i <= nxhi_fft; i++) {
work2[n] = fkz[k]*work1[n+1];
work2[n+1] = -fkz[k]*work1[n];
n += 2;
}
fft2->compute(work2,work2,-1);
n = 0;
for (k = nzlo_in; k <= nzhi_in; k++)
for (j = nylo_in; j <= nyhi_in; j++)
for (i = nxlo_in; i <= nxhi_in; i++) {
vdz_brick[k][j][i] = work2[n];
n += 2;
}
}
/* ----------------------------------------------------------------------
interpolate from grid to get electric field & force on my particles
------------------------------------------------------------------------- */
void PPPM::fieldforce()
{
int i,l,m,n,nx,ny,nz,mx,my,mz;
double dx,dy,dz,x0,y0,z0;
double ek[3];
// loop over my charges, interpolate electric field from nearby grid points
// (nx,ny,nz) = global coords of grid pt to "lower left" of charge
// (dx,dy,dz) = distance to "lower left" grid pt
// (mx,my,mz) = global coords of moving stencil pt
// ek = 3 components of E-field on particle
double *q = atom->q;
double **x = atom->x;
double **f = atom->f;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++) {
nx = part2grid[i][0];
ny = part2grid[i][1];
nz = part2grid[i][2];
dx = nx+shiftone - (x[i][0]-boxlo[0])*delxinv;
dy = ny+shiftone - (x[i][1]-boxlo[1])*delyinv;
dz = nz+shiftone - (x[i][2]-boxlo[2])*delzinv;
compute_rho1d(dx,dy,dz);
ek[0] = ek[1] = ek[2] = 0.0;
for (n = nlower; n <= nupper; n++) {
mz = n+nz;
z0 = rho1d[2][n];
for (m = nlower; m <= nupper; m++) {
my = m+ny;
y0 = z0*rho1d[1][m];
for (l = nlower; l <= nupper; l++) {
mx = l+nx;
x0 = y0*rho1d[0][l];
ek[0] -= x0*vdx_brick[mz][my][mx];;
ek[1] -= x0*vdy_brick[mz][my][mx];;
ek[2] -= x0*vdz_brick[mz][my][mx];;
}
}
}
// convert E-field to force
f[i][0] += qqrd2e*scale * q[i]*ek[0];
f[i][1] += qqrd2e*scale * q[i]*ek[1];
f[i][2] += qqrd2e*scale * q[i]*ek[2];
}
}
/* ----------------------------------------------------------------------
map nprocs to NX by NY grid as PX by PY procs - return optimal px,py
------------------------------------------------------------------------- */
void PPPM::procs2grid2d(int nprocs, int nx, int ny, int *px, int *py)
{
// loop thru all possible factorizations of nprocs
// surf = surface area of largest proc sub-domain
// innermost if test minimizes surface area and surface/volume ratio
int bestsurf = 2 * (nx + ny);
int bestboxx = 0;
int bestboxy = 0;
int boxx,boxy,surf,ipx,ipy;
ipx = 1;
while (ipx <= nprocs) {
if (nprocs % ipx == 0) {
ipy = nprocs/ipx;
boxx = nx/ipx;
if (nx % ipx) boxx++;
boxy = ny/ipy;
if (ny % ipy) boxy++;
surf = boxx + boxy;
if (surf < bestsurf ||
(surf == bestsurf && boxx*boxy > bestboxx*bestboxy)) {
bestsurf = surf;
bestboxx = boxx;
bestboxy = boxy;
*px = ipx;
*py = ipy;
}
}
ipx++;
}
}
/* ----------------------------------------------------------------------
charge assignment into rho1d
dx,dy,dz = distance of particle from "lower left" grid point
------------------------------------------------------------------------- */
void PPPM::compute_rho1d(double dx, double dy, double dz)
{
int k,l;
for (k = (1-order)/2; k <= order/2; k++) {
rho1d[0][k] = 0.0;
rho1d[1][k] = 0.0;
rho1d[2][k] = 0.0;
for (l = order-1; l >= 0; l--) {
rho1d[0][k] = rho_coeff[l][k] + rho1d[0][k]*dx;
rho1d[1][k] = rho_coeff[l][k] + rho1d[1][k]*dy;
rho1d[2][k] = rho_coeff[l][k] + rho1d[2][k]*dz;
}
}
}
/* ----------------------------------------------------------------------
generate coeffients for the weight function of order n
(n-1)
Wn(x) = Sum wn(k,x) , Sum is over every other integer
k=-(n-1)
For k=-(n-1),-(n-1)+2, ....., (n-1)-2,n-1
k is odd integers if n is even and even integers if n is odd
---
| n-1
| Sum a(l,j)*(x-k/2)**l if abs(x-k/2) < 1/2
wn(k,x) = < l=0
|
| 0 otherwise
---
a coeffients are packed into the array rho_coeff to eliminate zeros
rho_coeff(l,((k+mod(n+1,2))/2) = a(l,k)
------------------------------------------------------------------------- */
void PPPM::compute_rho_coeff()
{
int j,k,l,m;
double s;
double **a;
memory->create2d_offset(a,order,-order,order,"pppm:a");
for (k = -order; k <= order; k++)
for (l = 0; l < order; l++)
a[l][k] = 0.0;
a[0][0] = 1.0;
for (j = 1; j < order; j++) {
for (k = -j; k <= j; k += 2) {
s = 0.0;
for (l = 0; l < j; l++) {
a[l+1][k] = (a[l][k+1]-a[l][k-1]) / (l+1);
s += pow(0.5,(double) l+1) *
(a[l][k-1] + pow(-1.0,(double) l) * a[l][k+1]) / (l+1);
}
a[0][k] = s;
}
}
m = (1-order)/2;
for (k = -(order-1); k < order; k += 2) {
for (l = 0; l < order; l++)
rho_coeff[l][m] = a[l][k];
m++;
}
memory->destroy2d_offset(a,-order);
}
/* ----------------------------------------------------------------------
Slab-geometry correction term to dampen inter-slab interactions between
periodically repeating slabs. Yields good approximation to 2D Ewald if
adequate empty space is left between repeating slabs (J. Chem. Phys.
111, 3155). Slabs defined here to be parallel to the xy plane.
------------------------------------------------------------------------- */
void PPPM::slabcorr(int eflag)
{
// compute local contribution to global dipole moment
double *q = atom->q;
double **x = atom->x;
int nlocal = atom->nlocal;
double dipole = 0.0;
for (int i = 0; i < nlocal; i++) dipole += q[i]*x[i][2];
// sum local contributions to get global dipole moment
double dipole_all;
MPI_Allreduce(&dipole,&dipole_all,1,MPI_DOUBLE,MPI_SUM,world);
// compute corrections
double e_slabcorr = 2.0*PI*dipole_all*dipole_all/volume;
if (eflag) energy += qqrd2e*scale * e_slabcorr;
// add on force corrections
double ffact = -4.0*PI*dipole_all/volume;
double **f = atom->f;
for (int i = 0; i < nlocal; i++) f[i][2] += qqrd2e*scale * q[i]*ffact;
}
/* ----------------------------------------------------------------------
perform and time the 4 FFTs required for N timesteps
------------------------------------------------------------------------- */
void PPPM::timing(int n, double &time3d, double &time1d)
{
double time1,time2;
for (int i = 0; i < 2*nfft_both; i++) work1[i] = 0.0;
MPI_Barrier(world);
time1 = MPI_Wtime();
for (int i = 0; i < n; i++) {
fft1->compute(work1,work1,1);
fft2->compute(work1,work1,-1);
fft2->compute(work1,work1,-1);
fft2->compute(work1,work1,-1);
}
MPI_Barrier(world);
time2 = MPI_Wtime();
time3d = time2 - time1;
MPI_Barrier(world);
time1 = MPI_Wtime();
for (int i = 0; i < n; i++) {
fft1->timing1d(work1,nfft_both,1);
fft2->timing1d(work1,nfft_both,-1);
fft2->timing1d(work1,nfft_both,-1);
fft2->timing1d(work1,nfft_both,-1);
}
MPI_Barrier(world);
time2 = MPI_Wtime();
time1d = time2 - time1;
}
/* ----------------------------------------------------------------------
memory usage of local arrays
------------------------------------------------------------------------- */
double PPPM::memory_usage()
{
double bytes = nmax*3 * sizeof(double);
int nbrick = (nxhi_out-nxlo_out+1) * (nyhi_out-nylo_out+1) *
(nzhi_out-nzlo_out+1);
bytes += 4 * nbrick * sizeof(double);
bytes += 6 * nfft_both * sizeof(double);
bytes += nfft_both*6 * sizeof(double);
bytes += 2 * nbuf * sizeof(double);
return bytes;
}
Event Timeline
Log In to Comment